CMSC250

Set Proofs and Countability

Set Proofs and Countability

Set Proofs
Countability

Set Proofs

Note: Set theory Proofs are universal

Note: Set theory Proofs are universal

(So disproving means finding a counterexample)

Subsets and Equality

Recall: \(A \subseteq B \Leftrightarrow (\forall x, x \in A \Rightarrow x \in B)\)

Recall: Set Difference is \(A - B = A \cap B^c\)

Prove: Set Difference is \(A - B \subseteq A \cap B^c\)

Prove: Set Difference is \(A - B \subseteq A \cap B^c\)

\(x \in A - B\Rightarrow x \in A \land x \not\in B\)

\(x \not\in B\Rightarrow x \in B^c\)

\(x \in A \land x \in B^c\Rightarrow x \in A \cap B^c\)

Subsets and Equality

Note: Disproving a subset means having a counterexample

Note: Disproving a subset means having a counterexample

Venn diagram helps, but we want concrete example

Disprove: \(A \cup B \subseteq A^c \cup B\)

Disprove: \(A \cup B \subseteq A^c \cup B\)

\(A \cup B\)

\(A^c \cup B\)

Disprove: \(A \cup B \subseteq A^c \cup B\)

\(U = \{1,2,3,4\}, A = \{1,3\}, B = \{2,3\}\)

\(A \cup B = \{1,2,3\}, A^c \cup B = \{2,3,4\}\)

Subsets and Equality

Recall: \(A = B \Leftrightarrow (A \subseteq B \land B \subseteq A)\)

Recall: \(A = B \Leftrightarrow (A \subseteq B \land B \subseteq A)\)

\((\forall x, x\in A \Rightarrow x \in B) \land (\forall y,y \in B \Rightarrow y \in A)\)

\((\forall x \in A, x \in B) \land (\forall y \in B, y \in A)\)

Recall: Absorbtion Law: \(A \cup (A \cap B) = A\)

Prove: Absorbtion Law: \(A \cup (A \cap B) = A\)

Prove: Absorbtion Law: \(A \cup (A \cap B) = A\)

First: Prove \(A \cup (A \cap B) \subseteq A\)

\(x \in A \cup (A \cap B)\Rightarrow x \in A \lor x \in A \cap B\)

\(x \in A \cap B\Rightarrow x \in A \land x \in B\)

\(x \in A \cap B\Rightarrow x \in A\)

\(x \in A\)

Note: This is cases

Note: This is cases

Recall: Cases

\(\begin{array}{ll} & p \lor q\\ & p \Rightarrow r\\ & q \Rightarrow r\\ \therefore & r \end{array}\)

Note: This is cases

Recall: Cases

\(\begin{array}{ll} & (x \in A) \lor (x \in A \cap B)\\ & (x \in A) \Rightarrow (x \in A)\\ & (x \in A \cap B) \Rightarrow (x \in A)\\ \therefore & (x \in A) \end{array}\)

Prove: Absorbtion Law: \(A \cup (A \cap B) = A\)

Second: Prove \(A \subseteq A \cup (A \cap B)\)

\(x \in A, x \in A, A \subseteq A\)

\(x \in A\Rightarrow x \in A \cup (A \cap B)\Rightarrow A \subseteq A \cup (A \cap B)\)

Note: It is important to prove both directions

Prove: Absorbtion Law: \(A \cup (A \cap B) = A\)

Second: Prove \(A \subseteq A \cup (A \cap B)\)

\(x \in A\Rightarrow x \in A \cup (A \cap B)\Rightarrow A \subseteq A \cup (A \cap B)\)

Note: It is important to prove both directions

Recall: Demorgan's Law: \((A \cap B)^c = A^c \cup B^c\)

Prove: Demorgan's Law: \((A \cap B)^c = A^c \cup B^c\)

Prove: Demorgan's Law: \((A \cap B)^c = A^c \cup B^c\)

First: Prove \((A \cap B)^c \subseteq A^c \cup B^c\)

\(x \in (A \cap B)^c \Rightarrow x \not\in (A \cap B)\)

\(x \not\in (A \cap B) \Rightarrow x \not\in A \lor x \not\in B\) (or neither)

\(x \not\in A, x \in A^c \Rightarrow x \in A^c \cup B^c\)

\(x \not\in B, x \in B^c \Rightarrow x \in A^c \cup B^c\)

Prove: Demorgan's Law: \((A \cap B)^c = A^c \cup B^c\)

Second: Prove \(A^c \cup B^c \subseteq (A \cap B)^c\)

\(x \in A^c \cup B^c\Rightarrow x \in A^c \lor x \in B^c\) (or both)

\(x \in A^c, x \not\in A, \Rightarrow x \not\in (A \cap B)\)

\(x \in B^c, x \not\in B, \Rightarrow x \not\in (A \cap B)\)

\(x \not\in (A \cap B)\Rightarrow x \in (A \cap B) \Rightarrow A^c \cup B^c \subseteq (A \cap B)^c\)

Note: Cases again

Subsets and Equality

Note: Disproving set equality means having a counterexample

Note: Disproving set equality means having a counterexample

Venn diagram helps, but we want concrete example

Disprove: \(A \cup (C - B) = (A \cup C) - B\)


Disprove: \(A \cup (C - B) = (A \cup C) - B\)

\(A \cup (C-B)\)

\((A \cup C) - B\)

Disprove: \(A \cup (C - B) = (A \cup C) - B\)

\(U = \{1,2,3,4,5,6,7,8\}, A = \{1,4,5,7\}, B = \{2,4,6,7\}\)\(C = \{3,5,6,7\}\)

\(A \cup (C-B) = \{1,3,4,5,7\}, (A \cup C) - B = \{1,3,5\}\)

Emptiness

Difficult to show something that does not exist

Difficult to show something that does not exist

(Trying to show nonexistence is hard)

Difficult to show something that does not exist

The power of Contradiction

Prove: \(A \cap \emptyset = \emptyset\)

Prove: \(A \cap \emptyset = \emptyset\)

Assume: \(A \cap \emptyset \neq \emptyset\)

\(\exists x \in A \cap \emptyset\)

\(\exists x \in A \cap \emptyset, x \in A \land x \in \emptyset\)

\(x \in \emptyset\) Contradiction

Conditionals

Set conditionals are just arguments with sets

Recall: Valid argument is one where premises imply conclusion

Prove: If \(A \subset B\) and \(B \subseteq C^c\) then \(A \cap C = \emptyset\)

Prove: If \(A \subset B\) and \(B \subseteq C^c\) then \(A \cap C = \emptyset\)

\(\begin{array}{ll} & A \subset B\\ & B \subseteq C^c\\ \therefore & A \cap C = \emptyset \end{array}\)

Prove: If \(A \subset B\) and \(B \subseteq C^c\) then \(A \cap C = \emptyset\)

\(\forall x, x \in A \Rightarrow x \in B\)

\(\forall x, x \in B \Rightarrow x \in C^c\)

\(\forall x, x \in A \Rightarrow x \in C^c\)

\(\exists x \in B, x \not\in A\)

\(\exists x \in C^c, x \not\in A, \Rightarrow A \subset C^c\)

\(\forall x, x \in A\Rightarrow x \not\in C\)

\(A \cap C = \emptyset\)

Prove: If \(A \subseteq (B \cup C)\), \(B \subseteq D\) and \(C \subseteq E\) then \(A \subseteq (D \cup E)\)

\(\begin{array}{ll} & A \subseteq (B \cup C)\\ & B \subseteq D\\ & C \subseteq E\\ \therefore & A \subseteq (D \cup E) \end{array}\)

Prove: \(((A \cap B) = A) \Leftrightarrow A \in \mathcal{P}(B)\)

Countability

Recall:\(\vert A\vert\)

Recall:\(\vert A\vert\)

\(\vert \{1,2,3,4,5,6\}\vert\)

\(\vert \{\}\vert\)

\(\vert \{\{1,2,3\}\{1,2\}\}\vert\)

\(\vert \mathbb{Z}\vert\)

\(\vert \mathbb{R}\vert\)

\(\vert \mathbb{Z}^{evens}\vert\)

Consider \(\mathbb{Z}^+\)

\(1,2,3,4,5,6,...\)

Consider \(\mathbb{Z}^+\)

\(1,2,3,4,5,6,...\)

\(\mathbb{R}?\)

\(0,0.1,0.5,1,...???\)

A set is countable if we can match the elements to a 1-1 corespondence to \(\mathbb{N}\).

ie. We can find an injective function $f:\mathbb{N} \mapsto S$

A set is countable if we can match the elements to a 1-1 corespondence to \(\mathbb{N}^+\).

ie. We can find an injective function $f:\mathbb{N}^+ \mapsto S$

A set is uncountable if it's not countable

{positive evens} are countable

\(\begin{array}{llc} \mathbb{N}^+& &\text{Positive Evens}\\\hline 1 & \mapsto & 2\\ & & \\ & & \\ & & \\ \end{array}\)


{positive evens} are countable

\(\begin{array}{llc} \mathbb{N}^+& &\text{Positive Evens}\\\hline 1 & \mapsto & 2\\ 2 & \mapsto & 4\\ & & \\ & & \\ \end{array}\)


{positive evens} are countable

\(\begin{array}{llc} \mathbb{N}^+& &\text{Positive Evens}\\\hline 1 & \mapsto & 2\\ 2 & \mapsto & 4\\ 3 & \mapsto & 6\\ & & \\ \end{array}\)


{positive evens} are countable

\(\begin{array}{llc} \mathbb{N}^+& &\text{Positive Evens}\\\hline 1 & \mapsto & 2\\ 2 & \mapsto & 4\\ 3 & \mapsto & 6\\ 4 & \mapsto & 8\\ \end{array}\)

index \(\times\) 2

\(\mathbb{Z}\) are countable

\(\begin{array}{llc} \mathbb{N}^+& &\mathbb{Z}\\\hline 1 & \mapsto & 0\\ & & \\ & & \\ & & \\ & & \\ \end{array}\)


\(\mathbb{Z}\) are countable

\(\begin{array}{llc} \mathbb{N}^+& &\mathbb{Z}\\\hline 1 & \mapsto & 0\\ 2 & \mapsto & 1\\ & & \\ & & \\ & & \\ \end{array}\)


\(\mathbb{Z}\) are countable

\(\begin{array}{llc} \mathbb{N}^+& &\mathbb{Z}\\\hline 1 & \mapsto & 0\\ 2 & \mapsto & 1\\ 3 & \mapsto& -1\\ & & \\ & & \\ \end{array}\)


\(\mathbb{Z}\) are countable

\(\begin{array}{llc} \mathbb{N}^+& &\mathbb{Z}\\\hline 1 & \mapsto & 0\\ 2 & \mapsto & 1\\ 3 & \mapsto & -1\\ 4 & \mapsto & 2\\ & & \\ \end{array}\)


\(\mathbb{Z}\) are countable

\(\begin{array}{llc} \mathbb{N}^+& &\mathbb{Z}\\\hline 1 & \mapsto & 0\\ 2 & \mapsto & 1\\ 3 & \mapsto & -1\\ 4 & \mapsto & 2\\ 5 & \mapsto & -2\\ \end{array}\)

even index: \(\frac{i}{2}\), odd index: \(\frac{i-1}{-2}\)

\(\mathbb{Q}^+\) are countable

\(x \in \mathbb{Q} \Rightarrow \exists a,b \in \mathbb{Z}, x = \frac{a}{b} \land b \neq 0\)

Numerator: \(\{1,2,3,4,5,...\}\)

Denominator: \(\{1,2,3,4,5,...\}\)

\(\begin{array}{c|ccccc} n/d & 1 & 2 & 3 & 4 & \ldots\\\hline 1 & & & & &\\ 2 & & & & &\\ 3 & & & & &\\ 4 & & & & &\\ \vdots & & & & &\\ \end{array}\)

\(\begin{array}{c|ccccc} n/d & 1 & 2 & 3 & 4 & \ldots\\\hline 1 & 1/1& 2/1& 3/1&4/1 & \ldots\\ 2 & 1/2& 2/2& 3/2& 4/2& \ldots\\ 3 & 1/3& 2/3& 3/3& 4/3&\ldots \\ 4 & 1/4& 2/4& 3/4& 4/4&\ldots\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \end{array}\)

visited = []





 
              
visited = [1/1]
start at top left               




 
              
visited = [1/1,1/2]
start at top left               
Go down one



 
              
visited = [1/1,1/2,2/1]
start at top left               
Go down one
Go up-right diagonal


 
              
visited = [1/1,1/2,2/1,3/1]
start at top left               
Go down one
Go up-right diagonal
Go right one

 
              
visited = [1/1,1/2,2/1,3/1,2/2,1/3]
start at top left               
Go down one
Go up-right diagonal
Go right one
Go down-left diagonal
 
              
visited = [1/1,1/2,2/1,3/1,2/2,1/3,
start at top left               
Go down one
Go up-right diagonal
Go right one
Go down-left diagonal
Repeat from line 3 
              
visited = [1/1,1/2,2/1,3/1,2/2,1/3,
start at top left               
Go down one
Go up-right diagonal
Go right one
Go down-left diagonal
Repeat from line 3 
              
visited = [1/1,1/2,2/1,3/1,2/2,1/3,
start at top left               
Go down one
Go up-right diagonal
Go right one
Go down-left diagonal
Repeat from line 3 
              

Countability

What about \(\mathbb{R}\)

Consider [0,1]

\(\begin{array}{llc} \mathbb{N}& &\mathbb{R}\\\hline 1 & \mapsto & 0.a_1a_2a_3a_4a_5\ldots\\ 2 & \mapsto & 0.b_1b_2b_3b_4b_5\ldots\\ 3 & \mapsto & 0.c_1c_2c_3c_4c_5\ldots\\ 4 & \mapsto & 0.d_1d_2d_3d_4d_5\ldots\\ \vdots& \vdots&\vdots \\ \end{array}\)

\(\begin{array}{llc} \mathbb{N}& &\mathbb{R}\\\hline 1 & \mapsto & 0.a_1a_2a_3a_4a_5\ldots\\ 2 & \mapsto & 0.b_1b_2b_3b_4b_5\ldots\\ 3 & \mapsto & 0.c_1c_2c_3c_4c_5\ldots\\ 4 & \mapsto & 0.d_1d_2d_3d_4d_5\ldots\\ \vdots& \vdots&\vdots \\ \end{array}\)

New number \(x\): \(0.a_1b_2c_3d_4\ldots\)

Add 1 to each digit, or loop to 0

differs the \(k^{th}\) number by the \(k^{th}\) digit

\(\begin{array}{llc} \mathbb{N}& &\mathbb{R}\\\hline 1 & \mapsto & 0.a_1a_2a_3a_4a_5\ldots\\ 2 & \mapsto & 0.b_1b_2b_3b_4b_5\ldots\\ 3 & \mapsto & 0.c_1c_2c_3c_4c_5\ldots\\ 4 & \mapsto & 0.d_1d_2d_3d_4d_5\ldots\\ \vdots& \vdots&\vdots \\ \end{array}\)

No matter how close the 1st and 2nd numbers are, I can find a value between them

\(\frac{a+b}{2}\)