Property-Based Testing

How to test a program?

e Why Is testing important?
e A code tester walks into a bar
o Orders a beer
o Orders ten beers
rders 2.15 billion beers
rders -1 beer
rders a nothing
rders a lizard
o Tries to leave without paying

O O O O

Let’s test rev (list reverse)... with a unit test

let test_reverse =
reverse [1;2;3] = [3;2;1]

let rec rev 1 =
match 1 with

| [] = []
| h :: t > revt@ [h]

Sampl_e eXpeCted
arsument result

function
under test

Unit Testing

e WWhat is Unit Testing?

e Disadvantages
o Hard coded tests
o Difficult to write good unit tests
o Time consuming
o Have to write many tests
o Repeated/redundant tests

Properties

e |[nstead of unit tests on specific inputs and outputs, what if we could test
properties that hold for all inputs?

let prop_reverse 1 = rev (rev 1l) =1

e reversing a list twice gives back the original list

Property Based Testing

e Property testing consists of:
o Random input that is

tested on a property
npu
e What is a property??

Property
(input?)

o A feature that applies to outputs of all valid implementation of the
function
o Usually represented as a function that outputs a boolean!
e Advantages
o Speed up testing
o Help catch weird edge cases that are hard to come up with

Example

e Fall ‘24 Quiz 2
signed_square should take in an int x, square it, but keep the
original sign

e Example properties - some aren’'t valid!

o The output of signed_square should be greater than or equal
to the input

o The output of signed_square x should have the same sign as X

let signed_square x = if x < @ then (- x) * (- x) else x * X

Good/Bad Properties

e Good or bad? Why?

o The output of signed_square should be greater than or equal
to the input
e Bad :(

e some inputs of a valid implementation — returns false
e Ex. signed_square -4 = returns false because -16 < -4

o The output of signed_square x should have the same sign as x
e Good :)

e all inputs of a valid implementation — returns true
e nhote that the converse is not true!

Implementing Properties

e The output of signed_square x should have the same sign as x

fun x = (x > @) = (signhed_square x > 0)

fun X & X * signed_square x > ©

QCheck: PBT for 0Caml

e QCheck tests are described by
o a generator: generates random input
o a property: bool-valued function

e OCaml has QCheck

e Python: Hypothesis

e Rust: proptest

https://github.com/HypothesisWorks/hypothesis
https://github.com/proptest-rs/proptest

Setting Up QCheck

e |nstall
opam install qcheck

e Open the QCheck module
open QCheck
e In utop, before open QCheck

#require “qcheck”
e In dune file

(libraries qcheck)

Property Testing

e Making the test

open QCheck;

let test = Test.make ~count:1000 ~name:"signed_square_test”
(small_int) (fun x & (x * signed_square x) > 0);;

e Running the test

QCheck_runner.run_tests ~verbose:true [test]::

Implementing Properties Redux

e The output of signed_square x should have the same sign as x
o Seems like our property implementation was not correct

fun x &> x = 0 || X * signed_square x > 0
fun x = (x > @) = (signed_square x > 0)

fun x — compare x © = compare (signed_square x) ©

Let’'s practice!

e Some clarifications:
o Property is valid if it describes the intentions of the function
(what it’s supposed to do)
o Implementation of property is correct if it represents the property
(regardless of whether the property is good / bad)
o Testing a correct representation of a valid property can catch bugs, but
IS not guaranteed to
e Practice!
o Fall ‘24 Quiz 2
o Spring ‘25 Quiz 2

Problem 4: Property Based Testing

Consider the following function which has a bug in it:

(* signed_square should take in an int x, square it, but keep the original sign *)
let signed_square x = if x < o then (-x) * (-x) else x * x

Consider the following property: the output of signed_square should be greater than or equal to the input

Is this a valid property? Yes/No: ®’
Is the function fun x -> signed-square x >= xa correct representation of the property? Yes/No: ‘@

If we test this property on the provided code, will it ever return false?

The property is not valid so the result of testing this property is meaningless: .

Problem 2: Property Based Testing

Consider the following incorrect tree_map function.

type tree = Leaf of int | Node of int x tree x tree

(* has bug(s)! *)
let rec tree_map f tree = match tree with
Leaf(x) -> Leaf(f x)
[Node(x,1,r) -> Node(x, tree_map f 1, tree_map f r)

Consider the following property p about the tree_map function:
p : tree_map should not change the number of leaves

Using a correct implementation of tree_map, this property p should hold true for all valid inputs?

®

Using our implementation of tree_map, this property p would not hold true for all valid inputs?

) @

Suppose | encode this property in OCaml to be used in OCaml’s QCheck library as the following:

let prop f tree = count_leaves tree = count_leaves tree_map tree

The above prop function is a valid encoding of the property p. .

