
Property-Based Testing

Why is testing important?
A code tester walks into a bar

Orders a beer
Orders ten beers
Orders 2.15 billion beers
Orders -1 beer
Orders a nothing
Orders a lizard
Tries to leave without paying

How to test a program?

 let rec rev l =
 match l with
 | [] → []
 | h :: t → rev t @ [h]

Let’s test rev (list reverse)... with a unit test

let test_reverse =
 reverse [1;2;3] = [3;2;1]

function
under test

sample
argument

expected
result

What is Unit Testing?
Disadvantages

Hard coded tests
Difficult to write good unit tests
Time consuming
Have to write many tests
Repeated/redundant tests

Unit Testing

Instead of unit tests on specific inputs and outputs, what if we could test
properties that hold for all inputs?

Properties

let prop_reverse l = rev (rev l) = l

reversing a list twice gives back the original list

Property testing consists of:
Random input that is

 tested on a property
What is a property??

A feature that applies to outputs of all valid implementation of the
function
Usually represented as a function that outputs a boolean!

Advantages
Speed up testing
Help catch weird edge cases that are hard to come up with

Property Based Testing

Generate
Input

Property
(input?)

FALSE

TRUE

:(

BUGBUG

Example
Fall ‘24 Quiz 2

 signed_square should take in an int x, square it, but keep the
original sign

Example properties - some aren’t valid!
The output of signed_square should be greater than or equal
to the input
The output of signed_square x should have the same sign as x

let signed_square x = if x < 0 then (− x) * (− x) else x * x

Good/Bad Properties
Good or bad? Why?

The output of signed_square should be greater than or equal
to the input

The output of signed_square x should have the same sign as xsigned_square x

signed_square

Good :)
all inputs of a valid implementation → returns true
note that the converse is not true!

Bad :(
some inputs of a valid implementation → returns false
Ex. signed_square -4→ returns false because -16 < 4signed_square -4 -16 < -4

Implementing Properties
The output of signed_square x should have the same sign as xsigned_square x x

fun x → x * signed_square x > 0

fun x → (x > 0) = (signed_square x > 0)

QCheck: PBT for OCaml
QCheck tests are described by

a generator: generates random input
a property: bool-valued function

OCaml has QCheck
Python: Hypothesis
Rust: proptest

https://github.com/HypothesisWorks/hypothesis
https://github.com/proptest-rs/proptest

Install
opam install qcheck

Open the QCheck module
open QCheck

In utop, before open QCheck
#require “qcheck”

In dune file
(libraries qcheck)

open QCheck

Setting Up QCheck

opam install qcheck

#require “qcheck”

(libraries qcheck)

Making the test
open QCheck;

let test = Test.make ~count:1000 ~name:”signed_square_test”

(list small_int) (fun x-> signed_square x);;

Running the test

QCheck_runner.run_tests ~verbose:true [test];;

 open QCheck;
 let test = Test.make ~count:1000 ~name:”signed_square_test”
 (small_int) (fun x → (x * signed_square x) > 0);;

Property Testing

QCheck_runner.run_tests ~verbose:true [test];;

Implementing Properties Redux
The output of signed_square x should have the same sign as x

Seems like our property implementation was not correct
signed_square x x

fun x → x = 0 || x * signed_square x > 0

fun x → compare x 0 = compare (signed_square x) 0

fun x → (x > 0) = (signed_square x > 0)

Some clarifications:
Property is valid if it describes the intentions of the function

 (what it’s supposed to do)
Implementation of property is correct if it represents the property

 (regardless of whether the property is good / bad)
Testing a correct representation of a valid property can catch bugs, but
is not guaranteed to

Practice!
Fall ‘24 Quiz 2
Spring ‘25 Quiz 2

Let’s practice!

