
CMSC 330:  
Organization of Programming Languages

Course Logistics

Spring 2026



Course Goals

• Describe and compare programming language features
• Learn some fundamental concepts of Programming 

Languages

• Choose the right language for the job

• Write better code

∙ Code that is shorter, more efficient, with fewer bugs

• In short:

∙ Become a better programmer with a better 

understanding of your tools.



Course Activities

• Learn different types of languages

• Learn different language features
∙ Programming patterns repeat between languages

• Study how languages are specified
∙ Syntax, Semantics — mathematical formalisms

• Study how languages are implemented
∙ Parsing via regular expressions (automata theory) and 

context free grammars

∙ Mechanisms such as closures, tail recursion, type checking, 
lazy evaluation, garbage collection, …



Syllabus

• Functional programming (OCaml)

• Regular expressions & finite automata

• Context-free grammars & parsing

• Lambda Calculus and Operational Semantics

• Safe, “zero-cost abstraction” programming (Rust)

• Scoping, type systems, parameter passing, comparing 

language styles; other topics



Calendar / Course Overview

• Tests
∙ 4 quizzes, 2 midterm exams, 1 final exam
∙ Do not schedule your interviews on exam dates 

• Lecture quizzes
∙ Weekly ELMS quizzes

• Projects
∙ Project 0 – Out already!
∙ Project 1 - OCaml Basics
∙ Project 2,3,4,5 OCaml 
∙ Project 6,7 Rust projects

• Syllabus: https://bakalian.cs.umd.edu/cmsc330/syllabus



Grading
• Assessment in this course consists of proctored 

examinations and unproctored projects.
• Proctored:

• Midterms 1 and 2: 10% each
• Final: 22%
• 4 quizzes: 20%

• Unproctored:
• 5 Projects: 34%
• Gradescope quizzes: 4%

• Benchmark Grade Requirements for Proctored 
Components:

• Obtain an average of 60% across all exams and quizzes



Discussion Sections

• Discussions will be in-person

• Discussion sections will deepen understanding of 

concepts introduced in lecture

• Oftentimes discussion section will consist of 

programming exercises

• There will also be be quizzes, and some lecture 

material in discussion section



Project Grading

• Projects will be graded using the Gradescope

∙ Software versions on these machines are canonical

• Submit often. Activate the best submission 

• Develop programs on your own machine

∙ Your responsibility to ensure programs run correctly 

on gradescope

• See web page for OCaml, Rust versions we use, if you 

want to install at home



Rules and Reminders

• Lectures will be recorded.

• Use lecture notes as your text

∙ You will be responsible for everything in the notes, even if it is 

not directly covered in class!

• Keep ahead of your work

∙ Get help as soon as you need it 
∙ Office hours, Piazza (email as a last resort)

• Avoid distractions, to yourself and your classmates

∙ Keep cell phones quiet



Academic Integrity 

• All written work (including projects) done on your own

∙ Do not copy code from other students or from the web

∙ Do not post your code on the web

• Cheaters are caught by auto-comparing code

• The use of of AI generated code like chatGPT or Github 
Copilot is a violation of the Academic Integrity Policy

• Work together on high-level project questions

∙ Discuss approach, pointers to resources: OK

• Work together on practice exam questions



CMSC 330:  
Organization of Programming Languages

Overview



Plethora of programming languages

• Java, C/C++, C#

• LISP, Scheme, Racket, Haskell, OCaml

• Python, Ruby, JavaScript

• More

12



All Languages are (sort of) Equivalent

• A language is Turing complete if it can compute any 

function computable by a Turing Machine

• Essentially all general-purpose programming languages 

are Turing complete

∙ I.e., any program can be written in any programming language

13



Studying Programming Languages  

will make you a better programmer

• Ideas or features from one language translate to, or are 

later incorporated by, another
• Many “design patterns” in Java are functional programming techniques

• Learn to distinguish surface differences from deeper principles

• Features of a language make it easier or harder to program for a 

specific application

• Using the right programming language or style for a problem may make 

programming:
• Easier, faster, less error-prone



Studying Programming Languages

Become better at learning new languages

• A language not only allows you to express an idea, it also 

shapes how you think when conceiving it

• You may need to learn a new (or old) language
• Paradigms and fads change quickly in CS

• Also, may need to support or extend legacy systems



Changing Language Goals

• 1950s-60s – Compile programs to execute efficiently
• Language features based on hardware concepts, Integers, 

reals, goto statements

• Programmers cheap; machines expensive
• Computation was the primary constrained resource

• Programs had to be efficient because machines weren’t

∙ Note: this still happens today, just not as pervasively



Changing Language Goals: Now

• Program complexity has increased.

• Developer productivity matters more than raw speed.

• Hardware is much faster and cheaper, trade 

performance for clearer, shorter, and safer code. 

• Correctness and safety are more important.

• financial systems, medical devices

• Concurrency and distribution are now central concerns.

• Security is a first-class goal.



Programming in the Age of AI

• From writing code to describing intent.
• state what a program should do, not exactly how to do it.

• Languages as interfaces to AI systems.
• Like we interface with operating systems now

• Greater emphasis on correctness and verifiability.
• strong static typing

• formal specifications

• test generation

• More automation, less boilerplate.
• from “write everything explicitly” → “generate from patterns and 

intent”

• Adaptation and evolution at runtime.
• Future systems may include learning components that change 

behavior over time. 



Language Attributes to Consider

• Syntax

∙ What a program looks like

• Semantics

∙ What a program means (mathematically), i.e., what it computes

• Paradigm and Pragmatics

∙ How programs tend to be expressed in the language 

• Implementation

∙ How a program executes (on a real machine)

19



20

Syntax

• The keywords, formatting expectations, and structure of 

the language
• Differences between languages usually superficial

• C / Java  if (x == 1) { … } else { … }

• Ruby          if x == 1 … else … end

• OCaml  if (x = 1) then … else …

∙ Differences initially jarring; overcome with experience

• Concepts such as regular expressions, context-free 

grammars, and parsing handle language syntax



21

Semantics

• What does a program mean? What does it compute?

∙ Same syntax may have different semantics in different 

languages!

• Can specify semantics informally (in prose) or formally 

(in mathematics)

Physical Equality Structural Equality

Java a == b a.equals(b)

C a == b *a == *b

Ruby a.equal?(b) a == b

OCaml a == b a = b



Formal (Mathematical) Semantics

• What do my programs mean?

• Both OCaml functions implement “the factorial function.”  

How do I know this?  Can I prove it?

∙ Key ingredient: a mathematical way of specifying what programs 

do, i.e., their semantics

∙ Doing so depends on the semantics of the language

let rec fact n =

  if n = 0 then 1

  else n * (fact n-1)

let fact n =

  let rec aux i j =

    if i = 0 then j

    else aux (i-1) (j*i) in

  aux n 1

22



23

Paradigm

• There are many ways to compute something

∙ Some differences are superficial

∙ For loop vs. while loop

∙ Some are more fundamental

∙ Recursion vs. looping

∙ Mutation vs. functional update

∙ Manual vs. automatic memory management

• Language’s paradigm favors some computing methods 

over others. 

• This course uses OCaml and Rust as vehicles for exploring 
these concepts.



24

• Important features

∙ Regular expression handling

∙ Objects

∙ Inheritance

∙ Closures/code blocks

∙ Immutability

∙ Tail calls
∙ Pattern matching

∙ Unification

∙ Abstract types

∙ Garbage collection

• Declarations

∙ Explicit

∙ Implicit

• Type system

∙ Static

∙ Polymorphism

∙ Inference

∙ Dynamic

∙ Type safety

Defining Paradigm: Elements of PLs



• Programming languages differ in their 
• syntax, 

• semantics, 

• style and paradigm, pragmatics, 

• implementation strategies.

• Each language is designed with particular goals in mind, 

and these goals evolve as the computing environment 

changes.

• Concepts developed in one language frequently influence 

the design of others.

• Therefore, our focus is on learning transferable concepts 

and skills rather than any single programming language.

Summary


	Slide 1: CMSC 330:   Organization of Programming Languages 
	Slide 2: Course Goals
	Slide 3: Course Activities
	Slide 4: Syllabus
	Slide 5: Calendar / Course Overview 
	Slide 6: Grading
	Slide 7: Discussion Sections
	Slide 8: Project Grading
	Slide 9: Rules and Reminders
	Slide 10: Academic Integrity 
	Slide 11: CMSC 330:   Organization of Programming Languages 
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

