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Course Goals

• Describe and compare programming language features
• Learn some fundamental concepts of Programming 

Languages

• Choose the right language for the job

• Write better code

∙ Code that is shorter, more efficient, with fewer bugs

• In short:

∙ Become a better programmer with a better 

understanding of your tools.



Course Activities

• Learn different types of languages

• Learn different language features
∙ Programming patterns repeat between languages

• Study how languages are specified
∙ Syntax, Semantics — mathematical formalisms

• Study how languages are implemented
∙ Parsing via regular expressions (automata theory) and 

context free grammars

∙ Mechanisms such as closures, tail recursion, type checking, 
lazy evaluation, garbage collection, …



Syllabus

• Functional programming (OCaml)

• Regular expressions & finite automata

• Context-free grammars & parsing

• Lambda Calculus and Operational Semantics

• Safe, “zero-cost abstraction” programming (Rust)

• Scoping, type systems, parameter passing, comparing 

language styles; other topics



Calendar / Course Overview

• Tests
∙ 4 quizzes, 2 midterm exams, 1 final exam
∙ Do not schedule your interviews on exam dates 

• Lecture quizzes
∙ Weekly ELMS quizzes

• Projects
∙ Project 0 – Out already!
∙ Project 1 - OCaml Basics
∙ Project 2,3,4,5 OCaml 
∙ Project 6,7 Rust projects

• Syllabus: https://bakalian.cs.umd.edu/cmsc330/syllabus



Grading
• Assessment in this course consists of proctored 

examinations and unproctored projects.
• Proctored:

• Midterms 1 and 2: 10% each
• Final: 22%
• 4 quizzes: 20%

• Unproctored:
• 5 Projects: 34%
• Gradescope quizzes: 4%

• Benchmark Grade Requirements for Proctored 
Components:

• Obtain an average of 60% across all exams and quizzes



Discussion Sections

• Discussions will be in-person

• Discussion sections will deepen understanding of 

concepts introduced in lecture

• Oftentimes discussion section will consist of 

programming exercises

• There will also be be quizzes, and some lecture 

material in discussion section



Project Grading

• Projects will be graded using the Gradescope

∙ Software versions on these machines are canonical

• Submit often. Activate the best submission 

• Develop programs on your own machine

∙ Your responsibility to ensure programs run correctly 

on gradescope

• See web page for OCaml, Rust versions we use, if you 

want to install at home



Rules and Reminders

• Lectures will be recorded.

• Use lecture notes as your text

∙ You will be responsible for everything in the notes, even if it is 

not directly covered in class!

• Keep ahead of your work

∙ Get help as soon as you need it 
∙ Office hours, Piazza (email as a last resort)

• Avoid distractions, to yourself and your classmates

∙ Keep cell phones quiet



Academic Integrity 

• All written work (including projects) done on your own

∙ Do not copy code from other students or from the web

∙ Do not post your code on the web

• Cheaters are caught by auto-comparing code

• The use of of AI generated code like chatGPT or Github 
Copilot is a violation of the Academic Integrity Policy

• Work together on high-level project questions

∙ Discuss approach, pointers to resources: OK

• Work together on practice exam questions
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Plethora of programming languages

• Java, C/C++, C#

• LISP, Scheme, Racket, Haskell, OCaml

• Python, Ruby, JavaScript

• More
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All Languages are (sort of) Equivalent

• A language is Turing complete if it can compute any 

function computable by a Turing Machine

• Essentially all general-purpose programming languages 

are Turing complete

∙ I.e., any program can be written in any programming language
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Studying Programming Languages  

will make you a better programmer

• Ideas or features from one language translate to, or are 

later incorporated by, another
• Many “design patterns” in Java are functional programming techniques

• Learn to distinguish surface differences from deeper principles

• Features of a language make it easier or harder to program for a 

specific application

• Using the right programming language or style for a problem may make 

programming:
• Easier, faster, less error-prone



Studying Programming Languages

Become better at learning new languages

• A language not only allows you to express an idea, it also 

shapes how you think when conceiving it

• You may need to learn a new (or old) language
• Paradigms and fads change quickly in CS

• Also, may need to support or extend legacy systems



Changing Language Goals

• 1950s-60s – Compile programs to execute efficiently
• Language features based on hardware concepts, Integers, 

reals, goto statements

• Programmers cheap; machines expensive
• Computation was the primary constrained resource

• Programs had to be efficient because machines weren’t

∙ Note: this still happens today, just not as pervasively



Changing Language Goals: Now

• Program complexity has increased.

• Developer productivity matters more than raw speed.

• Hardware is much faster and cheaper, trade 

performance for clearer, shorter, and safer code. 

• Correctness and safety are more important.

• financial systems, medical devices

• Concurrency and distribution are now central concerns.

• Security is a first-class goal.



Programming in the Age of AI

• From writing code to describing intent.
• state what a program should do, not exactly how to do it.

• Languages as interfaces to AI systems.
• Like we interface with operating systems now

• Greater emphasis on correctness and verifiability.
• strong static typing

• formal specifications

• test generation

• More automation, less boilerplate.
• from “write everything explicitly” → “generate from patterns and 

intent”

• Adaptation and evolution at runtime.
• Future systems may include learning components that change 

behavior over time. 



Language Attributes to Consider

• Syntax

∙ What a program looks like

• Semantics

∙ What a program means (mathematically), i.e., what it computes

• Paradigm and Pragmatics

∙ How programs tend to be expressed in the language 

• Implementation

∙ How a program executes (on a real machine)
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Syntax

• The keywords, formatting expectations, and structure of 

the language
• Differences between languages usually superficial

• C / Java  if (x == 1) { … } else { … }

• Ruby          if x == 1 … else … end

• OCaml  if (x = 1) then … else …

∙ Differences initially jarring; overcome with experience

• Concepts such as regular expressions, context-free 

grammars, and parsing handle language syntax
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Semantics

• What does a program mean? What does it compute?

∙ Same syntax may have different semantics in different 

languages!

• Can specify semantics informally (in prose) or formally 

(in mathematics)

Physical Equality Structural Equality

Java a == b a.equals(b)

C a == b *a == *b

Ruby a.equal?(b) a == b

OCaml a == b a = b



Formal (Mathematical) Semantics

• What do my programs mean?

• Both OCaml functions implement “the factorial function.”  

How do I know this?  Can I prove it?

∙ Key ingredient: a mathematical way of specifying what programs 

do, i.e., their semantics

∙ Doing so depends on the semantics of the language

let rec fact n =

  if n = 0 then 1

  else n * (fact n-1)

let fact n =

  let rec aux i j =

    if i = 0 then j

    else aux (i-1) (j*i) in

  aux n 1
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Paradigm

• There are many ways to compute something

∙ Some differences are superficial

∙ For loop vs. while loop

∙ Some are more fundamental

∙ Recursion vs. looping

∙ Mutation vs. functional update

∙ Manual vs. automatic memory management

• Language’s paradigm favors some computing methods 

over others. 

• This course uses OCaml and Rust as vehicles for exploring 
these concepts.
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• Important features

∙ Regular expression handling

∙ Objects

∙ Inheritance

∙ Closures/code blocks

∙ Immutability

∙ Tail calls
∙ Pattern matching

∙ Unification

∙ Abstract types

∙ Garbage collection

• Declarations

∙ Explicit

∙ Implicit

• Type system

∙ Static

∙ Polymorphism

∙ Inference

∙ Dynamic

∙ Type safety

Defining Paradigm: Elements of PLs



• Programming languages differ in their 
• syntax, 

• semantics, 

• style and paradigm, pragmatics, 

• implementation strategies.

• Each language is designed with particular goals in mind, 

and these goals evolve as the computing environment 

changes.

• Concepts developed in one language frequently influence 

the design of others.

• Therefore, our focus is on learning transferable concepts 

and skills rather than any single programming language.

Summary
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