CMSC 330: Organization of Programming
Languages

Type Inference and Unification

CMSC330 Fall 2025



Type Checking vs Type Inference

» Type checking: use declared types to check types are
correct

let apply (f:('a->'b)) (x:'a):'b = f x

» Type inference:

let apply £ x = £ x

* Infer the most general types that could have been declared,
and type checks the code without the type information

CMSC330 Fall 2025



The Type Inference Algorithm

» Input: A program without types

» Output: A program with type for every expression, which
Is annotated with its most general type

CMSC330 Fall 2025



Why do we want to infer types?

» Reduces syntactic overhead of expressive types

/| C++ Declare a vector of vectors of integers
std::vector<std::vector<int>> matrix;

» Guaranteed to produce most general type
» Widely regarded as important language innovation

» lllustrative example of a flow-insensitive static analysis
algorithm

CMSC330 Fall 2025



History

Original type inference algorithm

* Invented by Haskell Curry and Robert Feys for the simply typed
lambda calculus in 1958

» In 1969, Hindley

* extended the algorithm to a richer language and proved it always
produced the most general type

» In 1978, Milner

* independently developed equivalent algorithm, called algorithm W,
during his work designing ML

» In 1982, Damas proved the algorithm was complete.

* Currently used in many languages: ML, Ada, Haskell, C# 3.0, F#,
Visual Basic .Net 9.0. Have been plans for Fortress, Perl 6,
C++0x,...

v

CMSC330 Fall 2025



Type Inference: Basic Idea

» Example

fun x > 2 + x
-: int —» int

» What is the type of the expression?
*+ hastype:int —int — int
* 2 has type: int
 Since we are applying + to x we need x : int
* Therefore, fun x -> 2 + x hastype int — int

CMSC330 Fall 2025



Type Inference: Basic Idea

» Example
fun £ > £ 3
-: (1nt > a) —»> a

» What is the type of the expression?
* 3 has type: int

* Since we are applying fto 3 we need f : int > a and the result is
of type a

* Therefore, fun £ —» £ 3 hastype (int— a) —a

CMSC330 Fall 2025



Type Inference: Basic Idea

» Example

fun £ > £ (£ 3)

» What is the type of the expression?

CMSC330 Fall 2025



Type Inference: Basic Idea

» Example

fun £ > £ (£ “hi”)

» What is the type of the expression?

CMSC330 Fall 2025



Type Inference: Basic Idea

» Example

fun £ > £ (£ 3, £ 4)

» What is the type of the expression?

CMSC330 Fall 2025

10



Type Inference: Complex Example

let square = fun z - z * z 1in
fun £ > fun x > fun y >
if (f x y) then (f (square x) y)
else (f x (£ x vy))

CMSC330 Fall 2025

11



Type Inference: Complex Example

let square = fun z - z * z in
fun £f 5> fun x - fun y —
if (f x y) then (f (square x)
else (f x (f x y))
* : int —» (int — int)

Zz : int

CMSC330 Fall 2025

y)

12



Type Inference: Complex Example

let square = fun z - z * z in
fun £f 5> fun x - fun y —
if (f x y) then (f (square x) y)
else (f x (f x y))
* : int —» (int — int)
z : int

square : int — 1int

CMSC330 Fall 2025

13



Type Inference: Complex Example

let square = fun z - z * z in
fun £ > fun x > fun y -
if (f x y) then (f (square x) vy)
else (f x (f x vy))

z : int square : int — int

(£ x y) . :bool

(£ (square x) y) :bool x: t

(f X (f x y)) :bool (square x):t

y : bool t = int

CMSC330 Fall 2025

14



Type Inference: Complex Example

z : int

X: int

y : bool
f

CMSC330 Fall 2025

let

square = fun z —- z * z in

fun £ > fun x > fun y -

if (£ x y) then (f (square x) vy)
else (f x (£ x vy))

square : int — int

(‘a > ‘b > bool), x: ‘a, y: ‘b

a: int

b: bool

15



Type Inference: Complex Example

let square = fun z - z * z 1in
fun £ > fun x > fun y -
if (f x y) then (f (square x) y)
else (f x (£ x vy))

z : int
square : int — int

f: (‘a > ‘b > bool), x: ‘a, y: ‘b

a: int b: bool

Type: (int — bool — bool) —int —5bool — bool

CMSC330 Fall 2025 16



Unification

» Unification is an algorithmic process of solving equations
between symbolic expressions

» Unifies two terms
» Used for pattern matching and type inference

Simple examples

* int*x and y * (bool * bool) are unifiable
> y=int
» X = (bool * bool)

¥

 int *int and int * bool are not unifiable

CMSC330 Fall 2025 17



Type Inference Algorithm

» Visit the AST and generate constraints:

* From environment: literals (2), built-in operators (+), known
functions (tail)

* From form of parse tree: e.g., application and abstraction nodes
» Solve constraints using unification

» Determine types of top-level declarations

CMSC330 Fall 2025

18



Step 1: Parse Program

» Parse program text to construct parse tree

fun x > 2 + x

Fun:
x: g = fresh guess ()
(g > infer (x+2) (extend env x:qg))

(x+2) :
unify (infer x env) TInt;

unify (infer 2 env) TInt;

TInt

CMSC330 Fall 2025

19



Inferring Polymorphic Types

» Example: fun f £ 2

Fun:
f: t = fresh guess ()
(t > infer (f 2) (extend env f:t))

(£ 2):

let t1 = infer £ env in (* £ : t)
let t2 = infer 2 env (* 2:int *)
let t3 = fresh guess () in

unify tl1 (t2 —» t3));

t3 (* int -> ‘a)

CMSC330 Fall 2025

20



Using Polymorphic Functions

(fun £-> £ 2) (fun d-> 4 +d)

let el
let e2
let e3

Fun ("f", App(ID "f", Int 2));;

Fun("x" ,Binop (Add, ID "x",
App (ell,el2) ;;

el: ((int->'a)->’a)
e2: (int->int)

e3: int

CMSC330 Fall 2025

ID "x") ) ;;

21



Most General Type

» Type inference produces the most general type

let rec map £ 1st =
match 1lst with

[1 -> [1
| hd :: t1 -> £ hd :: (map £ tl)
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

» Functions may have many less general types

val map : (t_1 -> int, [t 1]) -> [int]
val map : (bool -> t 2, [bool]) -> [t_2]
val map : (char -> int, [cChar]) -> [int]

» Less general types are all instances of most general
type, also called the principal type

CMSC330 Fall 2025

22



Complexity of Type Inference Algorithm

» When Hindley/Milner type inference algorithm was
developed, its complexity was unknown

» In 1989, Kanellakis, Mairson, and Mitchell proved that the
problem was exponential-time complete

» Usually linear in practice though...

* Running time is exponential in the depth of polymorphic
declarations

CMSC330 Fall 2025 23



Type Inference: Key Points

» Type inference computes the types of expressions
* Does not require type declarations for variables

* Finds the most general type by solving constraints
* Leads to polymorphism

» Sometimes better error detection than type checking

* Type may indicate a programming error even if no type error
» Some costs

* More difficult to identify program line that causes error

* Natural implementation requires uniform representation sizes

» ldea can be applied to other program properties
* Discover properties of program using same kind of analysis

CMSC330 Fall 2025

24



Example: Swap Two Values

» OCaml
let swap (x, y) =
let temp = !'x in
(x := ly; y := temp)
val swap : 'a ref * 'a ref -> unit = <fun>
» CH++

template <typename T>
void swap (T& x, T& y){

T tmp = x; x=y; y=tmp;
}

Declarations both swap two values polymorphically, but they are
compiled very differently

CMSC330 Fall 2025

26



Implementation

» OCaml

* swap is compiled into one function
* Typechecker determines how function can be used

» C++
* swap is compiled differently for each instance
(details beyond scope of this course ...)

» Why the difference?

 OCaml ref cell is passed by pointer. The local x is a pointer to
value on heap, so its size is constant

* C++ arguments passed by reference (pointer), but local x is on
the stack, so its size depends on the type

CMSC330 Fall 2025

27



Polymorphism vs Overloading

» Parametric polymorphism
* Single algorithm may be given many types
* Type variable may be replaced by any type
e ff:t—>t then £:int—int, £f:bool—bool, ...
» Overloading
* A single symbol may refer to more than one algorithm
* Each algorithm may have different type
* Choice of algorithm determined by type context
* Types of symbol may be arbitrarily different

* In ML, + has types int*int—>int, real*real—real, no
others

* Haskel permits more general overloading and requires user
assistance

CMSC330 Fall 2025

28



Varieties of Polymorphism

» Parametric polymorphism A single piece of code is typed
generically

* Imperative or first-class polymorphism
* ML-style or let-polymorphism
» Ad-hoc polymorphism The same expression exhibit different
behaviors when viewed in different types
* Overloading
* Multi-method dispatch
* intentional polymorphism
» Subtype polymorphism A single term may have many types

using the rule of subsumption allowing to selectively forget
information

CMSC330 Fall 2025

29



Summary

» Types are important in modern languages
* Program organization and documentation
* Prevent program errors
* Provide important information to compiler

» Type inference

* Determine best type for an expression, based on known
information about symbols in the expression

» Polymorphism
* Single algorithm (function) can have many types

CMSC330 Fall 2025

30



	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Type Checking vs Type Inference
	Slide 3: The Type Inference Algorithm
	Slide 4: Why do we want to infer types?
	Slide 5: History
	Slide 6: Type Inference: Basic Idea
	Slide 7: Type Inference: Basic Idea
	Slide 8: Type Inference: Basic Idea
	Slide 9: Type Inference: Basic Idea
	Slide 10: Type Inference: Basic Idea
	Slide 11: Type Inference: Complex Example
	Slide 12: Type Inference: Complex Example
	Slide 13: Type Inference: Complex Example
	Slide 14: Type Inference: Complex Example
	Slide 15: Type Inference: Complex Example
	Slide 16: Type Inference: Complex Example
	Slide 17: Unification
	Slide 18: Type Inference Algorithm
	Slide 19: Step 1: Parse Program
	Slide 20: Inferring Polymorphic Types
	Slide 21: Using Polymorphic Functions
	Slide 22: Most General Type
	Slide 23: Complexity of Type Inference Algorithm
	Slide 24: Type Inference: Key Points
	Slide 26: Example: Swap Two Values
	Slide 27: Implementation
	Slide 28: Polymorphism vs Overloading
	Slide 29: Varieties of Polymorphism 
	Slide 30: Summary 

