CMSC 330: Organization of Programming
Languages

Subtyping

CMSC330 Fall 2025

Subtyping

» The Liskov Substitution Principle:

* Let P (x) be a property provable about objects x of type T.
Then P (y) should be true for objects y of type S where S is a
subtype of T.

» In other words

* If Sis asubtype of T, then an S can be used anywhere a T is
expected

» Commonly used in object-oriented programming
* Subclasses can be used where superclasses expected .
* This is a kind of polymorphism

CMSC330 Fall 2025 2

What is subtyping?

» Sometimes “every Bisan A”
* Example:

» Every Circle or Square is a Shape

» Subtyping expresses this

A Shape
|
B| | Circle || Square

* “Bis a subtype of A” means: “every object that satisfies the rules

for a B also satisfies the rules for an A’

» Goal: code written using A's specification operates

correctly even if given a B

* Plus: clarify design, share tests, (sometimes) share code

CMSC330 Fall 2025

Subtyping

» Atype Sis a subtype of T, written S <: T, when any term of type S
can safely be used in a context where a term of type T is expected.

» S <:T means
e S is more informative than T.
 the values of type S are a subset of the values of type T.

CMSC330 Fall 2025

The Subsumption Rule

G e:S S <: T
GFe:T

(T-Sub)

* This rule tells us that, if S <: T, then every elementtof S is
also an element of T.

* For example, if we define the subtype relation so that
GH{x:Int, y:Int} <: {x:Int}
then we can use the subsumption rule to derive
Gk {x=0,y=1} <: {x:Int}
which is what we need to make our motivating example typecheck.

CMSC330 Fall 2025

Subtyping: A Preorder

« The subtype relation is formalized as a collection of inference
rules for deriving statements of the form s <: T, pronounced “S is

a subtype of T” (or “T is a supertype of S”).

* The subtype relation should always be a preorder, meaning that it
is reflexive and transitive.

Reflexivity: S <: S (S-REFL)

S : U U<: T (S-TRANS)
S <: T

Transitivity:

CMSC330 Fall 2025

Subtyping — Records: Width Subtyping

« Width Subtyping:
£1;:T; i€t} <2 {7127, ietn} S-RCDWIDTH

 Alonger record constitutes a more demanding—i.e., more
informative—specification, and so describes a smaller set of values.

« Examples:

 {x:Int, y:Int} <: {x:Int}
* {x:Int, y:Int, z:Bool} <: {x:Int}

CMSC330 Fall 2025 7

Quiz

{x:Int, y:Int} <: {y:Int}

A. True
B. False

CMSC330 Fall 2025

Quiz

{x:Int, y:Int} <: {y:Int}

A. True
B. False

CMSC330 Fall 2025

Subtyping — Records: Depth Subtyping
» Depth Subtyping:

foreachi S;<:! T;
{'l i . Si iel..n} < {'| i :Ti iel..n}
It is safe to allow the types of individual fields to vary, as long as the
types of each corresponding field in the two records are in the

subtype relation.

» Example:
e {x:{a:Int, b:Int}, y:{m:Int}} <: {x:{a:Int},y:{}}

S-RCDDEPTH

CMSC330 Fall 2025 10

Quiz

Which is the subtype of

CMSC330 Fall 2025

oQwp

{a

{x
{x

{ x:{a:Int, b:Bool} }

:Int,b:Bool}

:{a:Int}}

:{a:Int}, y:{b:Bool}}

:{a:Int, b:Bool,c:Int}, y:{d:Int}}

11

Quiz

Which is the subtype of

CMSC330 Fall 2025

oQwp

{a

{x
{x

{x:{a:Int,b:Bool}}

:Int,b:Bool}

:{a:Int}}

:{a:Int}, y:{b:Bool}}

:{a:Int, b:Bool,c:Int}, y:{d:Int}}

12

Subtyping Derivations

S-RCDWIDTH S-RCDWIDTH
{a:Nat,b:Nat} <: {a:Nat} {m:Nat} <: {}

S-RCDDEPTH

{x:{a:Nat,b:Nat},y:{m:Nat}} <! {x:{a:Nat},y:{}}

CMSC330 Fall 2025 13

Subtyping — Records: Permutation Subtyping

» Permutation Subtyping: the order of fields in a record does not make
any difference to how we can safely use it

{k;:S;j/""} is a permutation of {1;:T; """}
{kJ . SJ jeI..n} < {-Il :Ti iel..n}

S-RCDPERM

» Example:
e {c:Unit,b:Bool,a:Int} <: {a:Int,b:Bool,c:Unit}

e {a:Nat,b:Bool,c:Unit} <: {c:Unit,b:Bool,a:Nat}

CMSC330 Fall 2025 14

Quiz

Which rules will we need to build a derivation of the following?

{x:Int,y:Int,z:Int} <: {y:Int}

S-RCDDEPTH
S-RCDWIDTH
S-RCDPERM
S-TRANS

CoOow>

CMSC330 Fall 2025

15

Quiz

Which rules will we need to build a derivation of the following?

{x:Int, y:Int, z:Int} <: {y:Int}

S-RCDDEPTH
S-RCDWIDTH
S-RCDPERM
S-TRANS

oo w>

CMSC330 Fall 2025

16

Subtyping — Functions

» Functions can be passed as arguments to other functions, we must
also give a subtyping rule for function types

51 —>52 <: T1—-T1>

» Notice that the sense of the subtype relation is reversed
(contravariant) for the argument types in the left-hand premise,
while it runs in the same direction (covariant) for the result types
as for the function types themselves.

CMSC330 Fall 2025 17

Subtyping — Functions

» Intuition

* Let's say | have a Java function, f, which takes a Cat object and
returns an Animal. What are the subtypes of this function? Well, if
it takes a Cat then | can certainly replace this function with one
that takes an Animal. Likewise, if it returns an Animal then | can
certainly replace this function with one that returns a Cat (or
Dog). Therefore, | conclude that...

(Animal - Cat) <: (Cat - Animal)
(Animal - Dog) <: (Cat - Animal)

CMSC330 Fall 2025 18

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Subtyping
	Slide 3: What is subtyping?
	Slide 4: Subtyping
	Slide 5: The Subsumption Rule
	Slide 6: Subtyping: A Preorder
	Slide 7: Subtyping — Records: Width Subtyping
	Slide 8: Quiz
	Slide 9: Quiz
	Slide 10: Subtyping — Records: Depth Subtyping
	Slide 11: Quiz
	Slide 12: Quiz
	Slide 13: Subtyping Derivations
	Slide 14: Subtyping — Records: Permutation Subtyping
	Slide 15: Quiz
	Slide 16: Quiz
	Slide 17: Subtyping — Functions
	Slide 18: Subtyping — Functions

