
CMSC 330: Organization of Programming

Languages

Type Checking

1CMSC330 Fall 2025

Implementing an Interpreter

2

let x = 3 in x + 1
Let ("x", false,
 Int 3,
 Binop (Add, ID "x", Int 1))

Parsing

Int 4

Evaluation

4
Pretty Printing

CMSC330 Fall 2025

Implementing an Interpreter: type error

3

let x = true in x + 1
Let ("x", false,
 Bool true,
 Binop (Add, ID "x", Int 1))

Parsing

Evaluation

Error

CMSC330 Fall 2025

Type Checking

4

let x = 3 in x + 1
Let ("x", false,
 Int 3,
 Binop (Add, ID "x", Int 1))

Parsing

Int 4

Eval

4
Pretty Printing

Int

Type Checking

CMSC330 Fall 2025

Type Systems

5

• A type system is a series of rules that ascribe types to expressions
• The rules prove statements e : t

• A mechanism for distinguishing good programs from bad

• Good programs = well typed

• Bad programs = ill-typed or not typable

• Example:

• 0 + 1 // well typed

• false 0 // ill-typed: can’t apply a Boolean
• 1 + (if true then 0 else false) // ill-typed: can’t add boolean to

integer

• The process of applying these rules is called type checking

• Or simply, typing

• Different languages have different type systems

CMSC330 Fall 2025

Recall Inference Rules

When defining how evaluation worked, we used this notation:

We used inference rules to define judgment A:e ⇒ v and

translated rules into an interpreter for the MicroOCaml language.

A:e ⇒ v was read in English as “e evaluates to v in an Environment

A

6

A; e1 ⇒ v1 A,x:v1; e2 ⇒ v2

A; let x = e1 in e2 ⇒ v2

CMSC330 Fall 2025

Type Checking

Inference rules can also be used to specify a program’s

static semantics, I.e., the rules for type checking

Judgment

is read in English as "e has type t in context G."

We define inference rules for this judgment, just as with the

operational semantics

7

G ⊢ e : t

CMSC330 Fall 2025

Typing Contexts

What is the type checking context G?

• G is a (partial) function that maps variable names to types.

G(x) -- look up x's type in G

G,x:t -- extend G so that x maps to t

Example context: x:int, y:bool, z:int

When G is empty, we just write: e:t

8CMSC330 Fall 2025

Typing Contexts and Free Variables

• Intuition:

• If an expression e contains free variables x, y, and z then we

need to supply a context G that contains types for at least x, y

and z. If we don't, we won't be able to type-check e.

 e = Binop (Add,ID "x", Binop(Add,ID "y",ID "z"))

9

ID Type

x Int

y Int

z Int

G:

CMSC330 Fall 2025

Type Checking Rules

Goal: Give rules that define the relation "G Ͱ e : t".

• We give one rule for every sort of expression.

10

type expr =

 Int of int

 | Bool of bool

 | ID of var

 | Fun of var * exptype * expr

 | Not of expr

 | Binop of op * expr * expr

 | If of expr * expr * expr

 | App of expr * expr

 | Let of var * bool * expr * expr

 | Record of (label * expr) list

 | Select of label * expr

CMSC330 Fall 2025

Type Checking Rules: Booleans

Boolean constants have type bool

Boolean constants b always have type bool, no matter

what the context G is"

11

G⊢ true : bool G⊢ false : bool

CMSC330 Fall 2025

Type Checking Rules: Integers

Integers have type Int

Integer constants n always have type Int, no matter what

the context G is"

12

G⊢ n : Int

CMSC330 Fall 2025

Type Checking Rules: Binary Operators

Where:

• optype (+, -, *, /) = (Int, Int, Int)

• optype (=, !=) = (‘a, ‘a , Bool)

• optype (<, >, <=, >=) = (int, int, bool)

• optype (&&, ||) = (Bool, Bool, Bool)

e1 op e2 has type t3, if e1 has type t1 ,e2 has type t2 and op is

an operator that takes arguments of type t1 and t2 and returns a

value of type t3

13

G⊢e1: t1, G⊢e2: t2, optype(op)=(t1,t2,t3)

G⊢ e1 op e2: t3

CMSC330 Fall 2025

Type Checking Rules: Variables

Variable x has the type given by the context

14

G⊢ x : G(x)

Rule for variables:

CMSC330 Fall 2025

Type Checking Rules: Conditionals

Eq0:

If

If e1 has type bool, and e2 has type t, and e3 has (the same) type

t then if e1 then e2 else e3 has type t

15

G⊢ e : int

G⊢ eq0 e : bool

G⊢ e1 : bool G⊢ e2 : t G⊢ e3 : t

G⊢ if e1 then e2 else e3 : t

CMSC330 Fall 2025

Type Checking Rules: Let

If e1 has type t1 and G extended with x:t1 proves e2 has type

t2 then let x = e1 in e2 has type t2

16

G ⊢ e1 : t1 G,x:t1 ⊢ e2 : t2

G ⊢ let x = e1 in e2 : t2

CMSC330 Fall 2025

Type Checking Rules: Functions

if G extended with x:t1 proves e has type t2 then fun x→e has

type t1 → t2

17

G,x:t1 ⊢ e : t2

G ⊢ fun x:t1→e:t1→t2

CMSC330 Fall 2025

Type Checking Rules: Function Call

If e1 has type t1→t2 and e2 has type t1 then e1 e2 has type

t2

18

G⊢ e1:t1→t2 G⊢e2:t1

G ⊢ e1 e2 :t2

CMSC330 Fall 2025

Type Checking Rules: Record

Record:

Select

19

G⊢ e1:t1 … G⊢en:tn

G ⊢ {l1=e1…ln=en}:l1:t1 … ln:tn

G⊢ e1:t1 … G⊢en:tn,
G ⊢{l1=e1 … ln=en}:l1:t1 … ln:tn

G ⊢e:{l1:t1 … ln:tn}

G ⊢ e.li:ti

CMSC330 Fall 2025

Typing Derivation

A typing derivation is a "proof" that an expression is well-typed in a

particular context.

Such proofs consist of a tree of valid rules, with no obligations left

unfulfilled at the top of the tree.

20

G,x:int⊢x:int G,x:int⊢2:int

G,x:int⊢x+2:int

G⊢fun x:int→(x+2):int->int

CMSC330 Fall 2025

Type Safety

A well-typed program is accepted by the

language’s type system

A program going wrong is one that the language’s

semantics gives no definition (undefined)
➢ If the program were to be run, anything could happen

➢ char buf[4]; buf[4] = ‘x’; // undefined!

A type-safe language is one in which for every

program, well-typed ⟹ well-defined

• Or, Well-typed programs never go wrong, in the words of

Robin Milner in 1978

21CMSC330 Fall 2025

Dynamic Type Checking

The run-time checks performed by dynamic languages

often called dynamic type checking

• These languages may be said to have a dynamic type system

The “type” of an expression checked as needed

• Values keep tag, set when the value is created, indicating its type

(e.g., what class it has)

Disallowed operations cause run-time exception

• Type errors may be latent in code for a long time

24CMSC330 Fall 2025

Quiz 1

When is the type of a variable determined in a dynamically

typed language?

• A. When the program is compiled

• B. At run-time, when the variable is used

• C. At run-time, when that variable is first assigned to

• D. At run-time, when the variable is last assigned to

26CMSC330 Fall 2025

Quiz 1

When is the type of a variable determined in a dynamically

typed language?

• A. When the program is compiled

• B. At run-time, when the variable is used

• C. At run-time, when that variable is first assigned to

• D. At run-time, when the variable is last assigned to

27CMSC330 Fall 2025

Quiz 2

When is the type of a variable determined in a statically

typed language?

• A. When the program is compiled

• B. At run-time, when the variable is used

• C. At run-time, when that variable is first assigned to

• D. At run-time, when the variable is last assigned to

28CMSC330 Fall 2025

Quiz 2

When is the type of a variable determined in a statically

typed language?

• A. When the program is compiled

• B. At run-time, when the variable is used

• C. At run-time, when that variable is first assigned to

• D. At run-time, when the variable is last assigned to

29CMSC330 Fall 2025

Static vs. Dynamic Type Systems

OCaml, Java, Haskell, etc. are statically typed

Ruby, Python, etc. are dynamically typed

But we can view dynamically typed languages as statically

typed in a particular sense:

• Can view all expressions as having a static type Dyn

➢ The language is uni-typed

• All operations are permitted on values of this type

➢ E.g., in Ruby, all objects accept any method call

• But: Some operations result in a run-time exception

➢ Those not supported by the value’s dynamic “type” (tag)

➢ Nevertheless, such behavior is well defined

30CMSC330 Fall 2025

Soundness and Completeness

Type safety is a soundness property

• That a term type checks implies its execution will be well-

defined

Static type systems are rarely complete

• That a term is well-defined does not imply that it will type

check
➢ if true then 0 else 4+"hi"

Dynamic type systems are often complete

• All expressions are well defined and (statically) type check

• 4+"hi" well-defined: it gives a run-time exception

31CMSC330 Fall 2025

Quiz 3

Which of the following is well-defined in OCaml, but is not

well-typed?

• A. let f g = (g 1, g “hello”) in f (fun x -> x)

• B. List.map (fun x -> x + x) [1; “hello”]

• C. let x = 0 in 5 / x

• D. let x = Array.make 1 1 in x.(2)

38CMSC330 Fall 2025

Quiz 3

Which of the following is well-defined in OCaml, but is not

well-typed?

• A. let f g = (g 1, g “hello”) in f (fun x -> x)

• B. List.map (fun x -> x + x) [1; “hello”]

• C. let x = 0 in 5 / x

• D. let x = Array.make 1 1 in x.(2)

Ill-typed and

ill-defined
well-typed and

well-defined

well-typed and

well-defined

Functions as arguments cannot

be used polymorphically

39CMSC330 Fall 2025

Perfect Type System? Impossible

No type system can do all of following

• (1) always terminate, (2) be sound, (3) be complete

• While trying to eliminate all run-time exceptions, e.g.,

➢ Using an int as a function

➢ Accessing an array out of bounds

➢ Dividing by zero, …

Doing so would be undecidable

• by reduction to the halting problem

• Eg., while (…) {…} arr[-1] = 1;

➢ Error tantamount to proving that the while loop terminates

40CMSC330 Fall 2025

Static vs. Dynamic Type Checking

Having carefully stated facts about static checking, can now

consider arguments about which is better:

 static checking or dynamic checking

42CMSC330 Fall 2025

Poll: Which Do You Prefer?

(a) static type systems (e.g., Java, Ocaml)

(b) dynamic type systems (e.g., Ruby, Python)

43CMSC330 Fall 2025

Claim 1: Dynamic is more convenient

Dynamic typing lets you build a heterogeneous list or return a

“number or a string” without workarounds

Ruby: a = [1,1.5]

OCaml:

 type t =

 Int of int

 | Float of float

 let a = [Int 1; Float 1.5];;

44CMSC330 Fall 2025

Claim 1: Static is more convenient

Can assume data has the expected type without cluttering

code with dynamic checks or having errors far from the logical

mistake

def cube(x)

 if x.is_a?(Numeric)

 x * x * x

 else

 "Bad argument”

 end

end

Ruby:

let cube x = x * x * x

(* we know x is int *)

OCaml:

45CMSC330 Fall 2025

Claim 2: Static prevents useful programs

Any sound static type system forbids programs that do nothing

wrong

Ruby:

 if e1 then

 “lady”

 else

 [7,”hi”]

 end

OCaml:

 if e1 then “lady” else (7,”hi”)

 (* does not type-check *)

46CMSC330 Fall 2025

Claim 2: But always workarounds

Rather than suffer time, space, and late-errors costs of

tagging everything, statically typed languages let

programmers “tag as needed” (e.g., with types)

Ruby: Tags everything implicitly (uni-typed)

OCaml: Tag explicitly, as needed (code up unifying type)

type tort = Int of int

 | String of string

 | Cons of tort * tort

 | Fun of (tort -> tort)

 | …

if e1 then

 String "lady"

else

 Cons (Int 7, String "hi")

47CMSC330 Fall 2025

Claim 3: Static catches bugs earlier

Static typing catches many simple bugs as soon as

“compiled”.

• Since such bugs are always caught, no need to test for them.

• In fact, can code less carefully and “lean on” type-checker

def pow (x,y)

 if y == 0 then

 1

 else

 x * pow (y - 1)

 end

end

can’t detect until run

Ruby: OCaml:

let pow x y =

if y = 0 then 1

else x * pow (y-1)

(* does not type-check *)

48CMSC330 Fall 2025

Claim 3: Static catches only easy bugs

But static often catches only “easy” bugs, so you still have to

test your functions, which should find the “easy” bugs too

def pow (x,y)

 if y == 0 then

 1

 else

 x + pow (x,(y-1))

 end

end

Ruby: OCaml:

let pow x y =

if y = 0 then 1

else x + pow x (y-1)

(* oops *)

49CMSC330 Fall 2025

Claim 4: Static typing is faster

Language implementation:

• Does not need to store tags (space, time)

• Does not need to check tags (time)

• Can rely on values being a particular type, so it can perform more

optimizations

Your code:

• Does not need to check arguments and results beyond what is

evidently required

50CMSC330 Fall 2025

Claim 4: Dynamic typing is not too much slower

Language implementation:

• Can use remove some unnecessary tags and tests despite the

lack of types

➢ While difficult (impossible) in general, it is often possible for the

performance-critical parts of a program

Your code:

• Do not need to “code around” type-system limitations with extra

tags, functions etc.

51CMSC330 Fall 2025

Claim 5: Code reuse easier with dynamic

Without a restrictive type system, more code can just be reused with

data of different types

If you use cons cells for everything, libraries that work on cons cells

are useful

Collections libraries are amazingly useful but often have very

complicated static types

• Polymorphism/generics/etc. are hard to understand, but are aiming to provide

what dynamic typing gives naturally

Etc.

52CMSC330 Fall 2025

Claim 5: Code reuse easier with static

The type system serves as “checked documentation,” making the

“contract” with others’ code easier to understand and use correctly

53CMSC330 Fall 2025

Redux: Which Do You Prefer?

(a) static type systems (e.g., Java, Ocaml)

(b) dynamic type systems (e.g., Ruby, Python)

54CMSC330 Fall 2025

Static vs. Dynamic: Age-old Debate

Static vs. dynamic typing is too coarse a question

• Better question: What should we enforce statically?
➢ E.g., OCaml checks array bounds, division-by-zero, at run-time

• Legitimate trade-offs

Idea: Flexible languages allowing best-of-both-worlds?

• Use static types in some parts of the program, but dynamic

checking in other parts?

➢ Called gradual typing: an idea still under active research

• Would programmers use such flexibility well? Who decides?

55CMSC330 Fall 2025

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Implementing an Interpreter
	Slide 3: Implementing an Interpreter: type error
	Slide 4: Type Checking
	Slide 5: Type Systems
	Slide 6: Recall Inference Rules
	Slide 7: Type Checking
	Slide 8: Typing Contexts
	Slide 9: Typing Contexts and Free Variables
	Slide 10: Type Checking Rules
	Slide 11: Type Checking Rules: Booleans
	Slide 12: Type Checking Rules: Integers
	Slide 13: Type Checking Rules: Binary Operators
	Slide 14: Type Checking Rules: Variables
	Slide 15: Type Checking Rules: Conditionals
	Slide 16: Type Checking Rules: Let
	Slide 17: Type Checking Rules: Functions
	Slide 18: Type Checking Rules: Function Call
	Slide 19: Type Checking Rules: Record
	Slide 20: Typing Derivation
	Slide 21: Type Safety
	Slide 24: Dynamic Type Checking
	Slide 26: Quiz 1
	Slide 27: Quiz 1
	Slide 28: Quiz 2
	Slide 29: Quiz 2
	Slide 30: Static vs. Dynamic Type Systems
	Slide 31: Soundness and Completeness
	Slide 38: Quiz 3
	Slide 39: Quiz 3
	Slide 40: Perfect Type System? Impossible
	Slide 42: Static vs. Dynamic Type Checking
	Slide 43: Poll: Which Do You Prefer?
	Slide 44: Claim 1: Dynamic is more convenient
	Slide 45: Claim 1: Static is more convenient
	Slide 46: Claim 2: Static prevents useful programs
	Slide 47: Claim 2: But always workarounds
	Slide 48: Claim 3: Static catches bugs earlier
	Slide 49: Claim 3: Static catches only easy bugs
	Slide 50: Claim 4: Static typing is faster
	Slide 51: Claim 4: Dynamic typing is not too much slower
	Slide 52: Claim 5: Code reuse easier with dynamic
	Slide 53: Claim 5: Code reuse easier with static
	Slide 54: Redux: Which Do You Prefer?
	Slide 55: Static vs. Dynamic: Age-old Debate

