CMSC 330: Organization of Programming
Languages

Type Checking

CMSC330 Fall 2025

Implementing an Interpreter

letx=3inx+1

Parsing

Pretty Printing

Y

Let ("x", false,
Int 3,
Binop (Add, ID "x", Int 1))

Evaluation

\4

CMSC330 Fall 2025

Int 4

Implementing an Interpreter: type error

let x =trueinx+1

Parsing

CMSC330 Fall 2025

\ 4

Let ("x", false,
Bool true,
Binop (Add, ID "x", Int 1))

Evaluation
Error

Type Checking

Parsing

letx=3inx+1

Pretty Printing

A\ 4

Let ("x", false,
Int 3,

Binop (Add, ID "x", Int 1))

Eval

CMSC330 Fall 2025

Int 4

Type Checking

A\ 4

Int

Type Systems

« Atype system is a series of rules that ascribe types to expressions
« Therules prove statements e : t

* A mechanism for distinguishing good programs from bad
« Good programs = well typed
« Bad programs = ill-typed or not typable
« Example:
« 0+ 1/ well typed
- false 0 //ill-typed: can’t apply a Boolean
« 1+ (if true then O else false) // ill-typed: can’t add boolean to
integer
« The process of applying these rules is called type checking
« Or simply, typing
 Different languages have different type systems

CMSC330 Fall 2025

Recall Inference Rules

» When defining how evaluation worked, we used this notation:

Aielo>vl Ax:vl e2>v2

A;let x = el in e2 > v2

» We used inference rules to define judgment A:e = v and
translated rules into an interpreter for the MicroOCaml language.

» A:e> v was read in English as “e evaluates to v in an Environment
A

CMSC330 Fall 2025

Type Checking

» Inference rules can also be used to specify a program'’s
static semantics, l.e., the rules for type checking

» Judgment
GFe : t

» Is read in English as "e has type t in context G."

» We define inference rules for this judgment, just as with the
operational semantics

CMSC330 Fall 2025

Typing Contexts

» What is the type checking context G?
* G is a (partial) function that maps variable names to types.

G(x) -- look up x's type in G
G,x:t -- extend G so that x maps to t

» Example context: x:int, y:bool, z:int
» When G is empty, we just write: e: t

CMSC330 Fall 2025

Typing Contexts and Free Variables

Intuition:

* |f an expression e contains free variables x, y, and z then we
need to supply a context G that contains types for at least %, y
and z. If we don't, we won't be able to type-check e.

e = Binop (Add,ID "x", Binop(Add,ID "y",ID "z"))

X Int
) Int

z Int
CMSC330 Fall 2025

Type Checking Rules

» Goal: Give rules that define the relation "G F e : t".

e We give one rule for every sort of expression.
type expr =

CMSC330 Fall 2025

Int of int

Bool of bool

ID of var

Fun of var * exptype * expr
Not of expr

Binop of op * expr * expr

If of expr * expr * expr

App of expr * expr

Let of var * bool * expr * expr
Record of (label * expr) 1list
Select of label * expr

10

Type Checking Rules: Booleans

» Boolean constants have type bool

Gl true : bool Gt false : bool

» Boolean constants b a/lways have type bool, no matter
what the context G is"

CMSC330 Fall 2025

11

Type Checking Rules: Integers

» Integers have type Int

G n: Int

» Integer constants n always have type Int, no matter what
the context G is"

CMSC330 Fall 2025 12

Type Checking Rules: Binary Operators

Glel: t1, GFe2: t2, optype(op)=(tl,t2,t3)
G el op e2: t3

» Where:
e optype (+, -, *, /) = (Int, Int, Int)
e optype (=, =) = (‘a, ‘a, Bool)
* optype (<, >, <=, >=) = (int, int, bool)
* optype (&&, ||) = (Bool, Bool, Bool)

» el op e2hastype t3,ifel hastype tl ,e2 hastype t2 and op is
an operator that takes arguments of type t1 and t2 and returns a
value of type t3

CMSC330 Fall 2025 13

Type Checking Rules: Variables

Rule for variables:

GF x : G(x)

» Variable x has the type given by the context

CMSC330 Fall 2025

14

Type Checking Rules: Conditionals

» EQO:
Gk e: int
GF eq0 e : bool

v f

G el:bool GFHe2: t Ge3: t
Gk if el then e?elsee3 : t

» If el has type bool, and e2 has type t, and e3 has (the same) type
tthen if el then e2 else e3 hastype t

CMSC330 Fall 2025 15

Type Checking Rules: Let

Grel: tl Gx:tlre2: t2
GFlet x = el in e2: t2

» If el has type t1 and G extended with x:t1 proves e2 has type
t2then let x = el in e2 hastype t2

CMSC330 Fall 2025

16

Type Checking Rules: Functions

G,x:t1l F e : t2
G F fun x:tl—oe:tl—>t2

» if G extended with x: t1 proves e has type t2 then fun x—e has
type t1 — t2

CMSC330 Fall 2025

17

Type Checking Rules: Function Call

G el:tl1—>t2 Gle2:tl
G F el e2 :t2

» If el hastype t1—t2 and e2 has type t1 then el e2 has type
t2

CMSC330 Fall 2025

18

Type Checking Rules: Record

» Record:
G e;:t; ... Gle,:t,
G F {l;=e,.1=e}:1,:¢t;, .. 1,:¢,
» Select
G e;:t; ... GFe,
G F{l,=e;, .. 1 =€, }:1;:¢t; .. 1 :¢t,

G Fe:{1,:¢t; .. 1,:¢t,}

GFe.l;:t;

CMSC330 Fall 2025

19

Typing Derivation

» A typing derivation is a "proof" that an expression is well-typed in a
particular context.

» Such proofs consist of a tree of valid rules, with no obligations left
unfulfilled at the top of the tree.

G,x:intFx:int G,x:intlF2:int

G,x:intFx+2:int

GFfun x:int- (x+2) :int->int

CMSC330 Fall 2025

20

Type Safety

» A well-typed program is accepted by the
language’s type system

» A program going wrong is one that the language’s
semantics gives no definition (undefined)

> If the program were to be run, anything could happen
» char buf[4]; buf[4] = X’; // undefined!

» A type-safe language is one in which for every
program, well-typed = well-defined

* Or, Well-typed programs never go wrong, in the words of
Robin Milner in 1978

CMSC330 Fall 2025

21

Dynamic Type Checking

» The run-time checks performed by dynamic languages
often called dynamic type checking
* These languages may be said to have a dynamic type system

» The “type” of an expression checked as needed

* Values keep tag, set when the value is created, indicating its type
(e.g., what class it has)

» Disallowed operations cause run-time exception
* Type errors may be latent in code for a long time

CMSC330 Fall 2025 24

Quiz 1

» When is the type of a variable determined in a dynamically
typed language?

. A. When the program is compiled

. B. At run-time, when the variable is used

. C. At run-time, when that variable is first assigned to
. D. At run-time, when the variable is last assigned to

CMSC330 Fall 2025 26

Quiz 1

» When is the type of a variable determined in a dynamically
typed language?

. A. When the program is compiled

. B. At run-time, when the variable is used

. C. At run-time, when that variable is first assigned to
. D. At run-time, when the variable is last assigned to

CMSC330 Fall 2025 27

Quiz 2

» When is the type of a variable determined in a statically
typed language?

. A. When the program is compiled

. B. At run-time, when the variable is used

. C. At run-time, when that variable is first assigned to
. D. At run-time, when the variable is last assigned to

CMSC330 Fall 2025

28

Quiz 2

» When is the type of a variable determined in a statically
typed language?

. A. When the program is compiled

. B. At run-time, when the variable is used

. C. At run-time, when that variable is first assigned to
. D. At run-time, when the variable is last assigned to

CMSC330 Fall 2025

29

Static vs. Dynamic Type Systems

» OCaml, Java, Haskell, etc. are statically typed
» Ruby, Python, etc. are dynamically typed

» But we can view dynamically typed languages as statically
typed in a particular sense:
e Can view all expressions as having a static type Dyn
» The language is uni-typed
» All operations are permitted on values of this type
» E.g., in Ruby, all objects accept any method call

* But: Some operations result in a run-time exception
» Those not supported by the value’s dynamic “type” (tag)
> Nevertheless, such behavior is well defined

CMSC330 Fall 2025 30

Soundness and Completeness

» Type safety is a soundness property

* That a term type checks implies its execution will be well-
defined

» Static type systems are rarely complete

* That a term is well-defined does not imply that it will type
check
> if true then 0 else 4+"hi"

» Dynamic type systems are often complete
* All expressions are well defined and (statically) type check
« 4+"hi" well-defined: it gives a run-time exception

CMSC330 Fall 2025 31

Quiz 3

» Which of the following is well-defined in OCaml, but is not
well-typed?

. letfg=1(g 1, g“hello’)inf (fun x -> x)
. List.map (fun x -=> x + x) [1; “hello”]
. letx=0in5/x

. let x = Array.make 1 1 in x.(2)

OO0 ®>»

CMSC330 Fall 2025 38

Quiz 3

» Which of the following is well-defined in OCaml, but is not

well-typed?

Functions as arguments cannot
be used polymorphically

. A. letfg=(g1, g “hello”) inf (fun x -> x)

. B. Listmap (fun x -> x + x) [1; "hello”] !”-(tjyr;.ed jnd
. -0 well-typed and i-detine
C. letx=0in5/x well-defined
- D. letx=Array.make 1 1in x.(2) well-typed and
well-defined

CMSC330 Fall 2025

39

Perfect Type System? Impossible

» No type system can do all of following

* (1) always terminate, (2) be sound, (3) be complete
* While trying to eliminate all run-time exceptions, e.g.,
» Using an int as a function
» Accessing an array out of bounds
» Dividing by zero, ...

» Doing so would be undecidable

* by reduction to the halting problem
* Eg.,,while (..) {..} arr[-1] = 1;
> Error tantamount to proving that the while loop terminates

CMSC330 Fall 2025

40

Static vs. Dynamic Type Checking

Having carefully stated facts about static checking, can now
consider arguments about which is better:

static checking or dynamic checking

CMSC330 Fall 2025 42

Poll: Which Do You Prefer?

» (a) static type systems (e.g., Java, Ocaml)
» (b) dynamic type systems (e.g., Ruby, Python)

CMSC330 Fall 2025

43

Claim 1: Dynamic is more convenient

» Dynamic typing lets you build a heterogeneous list or return a
“number or a string” without workarounds
Ruby : a=[1,1.5]
OCaml:
type t =
Int of int

| Float of float

let a = [Int 1; Float 1.5];;

CMSC330 Fall 2025

44

Claim 1: Static is more convenient

» Can assume data has the expected type without cluttering
code with dynamic checks or having errors far from the logical
mistake

Ruby: OCaml :
def cube (x) let cube x = x * x * x
if x.is a? (Numeric) (* we know x is int ¥)

X * x * x
else
"Bad argument”
end
end

CMSC330 Fall 2025

45

Claim 2: Static prevents useful programs

» Any sound static type system forbids programs that do nothing
wrong

Ruby:
if el then
“lady”
else
[7,7hi"]
end

OCaml :
if el then “lady” else (7,”hi”)
(* does not type-check *)

CMSC330 Fall 2025

46

Claim 2: But always workarounds

» Rather than suffer time, space, and late-errors costs of
tagging everything, statically typed languages let
programmers “tag as needed” (e.g., with types)

Ruby: Tags everything implicitly (uni-typed)
Oocaml: Tag explicitly, as needed (code up unifying type)

type tort = Int of int
| String of string
| Cons of tort * tort
| Fun of (tort -> tort)
I

if el then

String "lady"
else

Cons (Int 7, String "hi")

CMSC330 Fall 2025

47

Claim 3: Static catches bugs earlier

» Static typing catches many simple bugs as soon as

“compiled”.

* Since such bugs are always caught, no need to test for them.
* In fact, can code less carefully and “lean on” type-checker

Ruby :

def pow (x,y)
if y == 0 then
1
else
x * pow (y - 1)

end
end
can’t detect until run
CMSC330 Fall 2025

OCaml :

let pow x y =
if y =0 then 1
else x * pow (y-1)

(* does not type-check *)

48

Claim 3: Static catches only easy bugs

» But static often catches only “easy” bugs, so you still have to
test your functions, which should find the “easy” bugs too

Ruby :

def pow (x,y)
if y == 0 then
1
else
x + pow (x,(y-1))
end
end

CMSC330 Fall 2025

OCaml:

let pow x y =
if y =0 then 1
else x + pow x (y-1)

(* oops *)

49

Claim 4. Static typing is faster

» Language implementation:

* Does not need to store tags (space, time)
* Does not need to check tags (time)

e Can rely on values being a particular type, so it can perform more
optimizations

» Your code:

* Does not need to check arguments and results beyond what is
evidently required

CMSC330 Fall 2025 50

Claim 4: Dynamic typing is not too much slower

» Language implementation:

* Can use remove some unnecessary tags and tests despite the
lack of types

» While difficult (impossible) in general, it is often possible for the
performance-critical parts of a program

» Your code:

* Do not need to “code around” type-system limitations with extra
tags, functions etfc.

CMSC330 Fall 2025 51

Claim 5: Code reuse easier with dynamic

Without a restrictive type system, more code can just be reused with
data of different types

» If you use cons cells for everything, libraries that work on cons cells
are useful

» Collections libraries are amazingly useful but often have very
complicated static types

* Polymorphism/generics/etc. are hard to understand, but are aiming to provide
what dynamic typing gives naturally

» Etc.

CMSC330 Fall 2025 52

Claim 5: Code reuse easier with static

The type system serves as “checked documentation,” making the
“contract” with others’ code easier to understand and use correctly

CMSC330 Fall 2025

53

Redux: Which Do You Prefer?

» (a) static type systems (e.g., Java, Ocaml)
» (b) dynamic type systems (e.g., Ruby, Python)

CMSC330 Fall 2025

54

Static vs. Dynamic: Age-old Debate

» Static vs. dynamic typing is too coarse a question

* Better question: What should we enforce statically?
> E.g., OCaml checks array bounds, division-by-zero, at run-time

* Legitimate trade-offs

» ldea: Flexible languages allowing best-of-both-worlds?

* Use static types in some parts of the program, but dynamic
checking in other parts?

» Called gradual typing: an idea still under active research
* Would programmers use such flexibility well? Who decides?

CMSC330 Fall 2025

55

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Implementing an Interpreter
	Slide 3: Implementing an Interpreter: type error
	Slide 4: Type Checking
	Slide 5: Type Systems
	Slide 6: Recall Inference Rules
	Slide 7: Type Checking
	Slide 8: Typing Contexts
	Slide 9: Typing Contexts and Free Variables
	Slide 10: Type Checking Rules
	Slide 11: Type Checking Rules: Booleans
	Slide 12: Type Checking Rules: Integers
	Slide 13: Type Checking Rules: Binary Operators
	Slide 14: Type Checking Rules: Variables
	Slide 15: Type Checking Rules: Conditionals
	Slide 16: Type Checking Rules: Let
	Slide 17: Type Checking Rules: Functions
	Slide 18: Type Checking Rules: Function Call
	Slide 19: Type Checking Rules: Record
	Slide 20: Typing Derivation
	Slide 21: Type Safety
	Slide 24: Dynamic Type Checking
	Slide 26: Quiz 1
	Slide 27: Quiz 1
	Slide 28: Quiz 2
	Slide 29: Quiz 2
	Slide 30: Static vs. Dynamic Type Systems
	Slide 31: Soundness and Completeness
	Slide 38: Quiz 3
	Slide 39: Quiz 3
	Slide 40: Perfect Type System? Impossible
	Slide 42: Static vs. Dynamic Type Checking
	Slide 43: Poll: Which Do You Prefer?
	Slide 44: Claim 1: Dynamic is more convenient
	Slide 45: Claim 1: Static is more convenient
	Slide 46: Claim 2: Static prevents useful programs
	Slide 47: Claim 2: But always workarounds
	Slide 48: Claim 3: Static catches bugs earlier
	Slide 49: Claim 3: Static catches only easy bugs
	Slide 50: Claim 4: Static typing is faster
	Slide 51: Claim 4: Dynamic typing is not too much slower
	Slide 52: Claim 5: Code reuse easier with dynamic
	Slide 53: Claim 5: Code reuse easier with static
	Slide 54: Redux: Which Do You Prefer?
	Slide 55: Static vs. Dynamic: Age-old Debate

