CMSC 330: Organization of Programming
Languages

Operational Semantics

CMSC330 Fall 2025

Formal Semantics of a Prog. Lang.

» Mathematical description of the meaning of programs
written in that language
* What a program computes, and what it does

w1427 Plus(Int 1, Int 2)
Parse

Concrete Abstract

Syntax Syntax

» What does Plus (Int 1, Int 2) mean?

CMSC330 Fall 2025 2

Operational semantics

» Define how programs execute

* Often on an abstract machine (mathematical model of computer)
* Analogous to interpretation

» We will define an operational semantics for Micro-Ocaml
* And develop an interpreter for it, along the way

» Approach: use rules to define a judgment

e=->v

CMSC330 Fall 2025

Micro-OCaml Expression Grammar

e.=x|n|le+e|let x = el in e2

Corresponding AST:

type id = string

type exp =
| Ident of id (* x *)
| Num of int (* n *)
| Plus of exp * exp (* ete *)
I

Let of id * exp * exp (* let x=el in e2 *)

CMSC330 Fall 2025

Defining the Semantics

» Use rules to define judgment e > v
» Inference Rules

|_|1’ H, ... H, Vx(Man(x)—)Mortal(x))

C Man (Socrates)
Mortal (Socrates)

HiAH,A . H, = C

CMSC330 Fall 2025

Rules are Lego Blocks

€ o
Ecx
XN
om-
o

CMSC330 Fall 2025

Rules of Inference: Num and Sum

match e with
| Num n -> n

n-n axiom | Plus (el,e2) ->
let nl = eval el in
let n2 = eval e2 in
let n3 = nl + n2 in

el>nl e2=>n2 n3isnl+n2 n3

el +e2=>n3

CMSC330 Fall 2025 7

Rules of Inference: Let

el > vl e2{vl/x} > v2

let x = el in e2 => v2

match e with
| Let (x,el,e2) ->
let vl = eval el in
let e2’ = subst vl x e2 in
let v2 = eval e2’
in v2

CMSC330 Fall 2025

Derivations

» When we apply rules to an expression in succession, we
produce a derivation
e |t's a kind of tree, rooted at the conclusion

» Produce a derivation by goal-directed search
* Pick a rule that could prove the goal
* Then repeatedly apply rules on the corresponding hypotheses

> Goal: Show that 1et x = 4 in x+3 = 7

CMSC330 Fall 2025

Derivations

el > nl

e2=>n2 n3isnl+n2

n-n

el>vl

e2{vl/x} > v2

el +e2=>n3

Goal: show that

let x =

CMSC330 Fall 2025

el in e2 > v2

let x = 4 in x+3 = 7

4=>4 3=>3 7Iis4+3

4 =>4

443 = 7

let x = 4

in x+3=> 7

10

Definitional Interpreter

» The style of rules lends itself directly to the implementation of

an interpreter as a recursive function

let rec eval (e:exp):value =
match e with
Ident x -> (* no rule *)
failwith “no value”
| Num n -> n
| Plus (el,e2) ->
let nl = eval el in
let n2 = eval e2 in
let n3 = nl+n2 in
n3
| Let (x,el,e2) ->
let vl = eval el in
let e2’ = subst vl x e2 in
let v2 = eval e2’ in v2

n-n

el>nl e2=>n2 n3isnl+n2

el+e2>n3

el > vl e2{vl/x} > v2

CMSC330 Fall 2025

let x

el in e2 > v2

13

Derivations = Interpreter Call Trees

4=>4 3=>3 7is4+3

4 = 4 443 => 77

let x =4 in x+3=> 7

Has the same shape as the recursive call tree of the interpreter:

eval Num 4=>4 eval Num 3= 3 7is 443

eval (subst 4 “x”
eval Num 4=>4 Plus (Ident (“x”) ,Num 3)) =7

eval Let (“x” ,Num 4,Plus (Ident(“x”),Num 3)) =7

CMSC330 Fall 2025

14

Semantics Defines Program Meaning

» e > v holds if and only if a proofcan be built

* Proofs are derivations: axioms at the top, then rules whose
hypotheses have been proved to the bottom

* No proof means there exists no v for which e = v
» Proofs can be constructed bottom-up

* |In a goal-directed fashion
» Thus, functionevale={v|e=> v}

* Determinism of semantics implies at most one element for any e
» So: Expression e means v

CMSC330 Fall 2025 15

Environment-style Semantics

» So far, semantics used substitution to handle variables

* As we evaluate, we replace all occurrences of a variable x with
values it is bound to

» An alternative semantics, closer to a real implementation,
Is to use an environment

* As we evaluate, we maintain an explicit map from variables to
values, and look up variables as we see them

CMSC330 Fall 2025 16

Environments

» Mathematically, an environment is a partial function from

identifiers to values

* If Ais an environment, and x is an identifier, then A(x) can either be

» a value v (intuition: the value of the variable stored on the stack)
» undefined (intuition: the variable has not been declared)

» An environment can visualized as a table

° IfAis
Id

Val

0
2

* then A(x) is 0, A(y) is 2, and A(z) is undefined

CMSC330 Fall 2025

17

Notation, Operations on Environments

» * IS the empty environment

» A,x:vis the environment that extends A with a mapping
from xto v

* Sometimes just write x:v instead of *,x:v for brevity
» Lookup A(x) is defined as follows

o(x) = undefined
[v fx=y
(A, yv)(x)= {4 A(x) if x <>y and A(x) defined

undefined otherwise

CMSC330 Fall 2025 18

Definitional Interpreter:. Environments

type env = (id * value) list
let extend env x v = (x,Vv)::env

let rec lookup env x =
match env with
[] -> failwith “undefined”
| (y,v)::env’ ->
if x = y then v
else lookup env’ x

An environment is just a list of mappings,
which are just pairs of variable to value
- called an association list

CMSC330 Fall 2025

Semantics with Environments

» The environment semantics changes the judgment
e->v
to be
Ales>v

where A is an environment
* |dea: Ais used to give values to the identifiers in e

CMSC330 Fall 2025

20

Environment-style Rules

Look up
A(x)=v variable x in

environment A
A x> v A:n=>n

’/\ Extend
Arels>vli Axlviez2s vz °enVionmentA
with mapping

A let x = el in e2 > v2 from x to v1

Aiel=>nl A;e2=>n2 n3isnl+n2
A el+e2=>n3

CMSC330 Fall 2025

Definitional Interpreter: Evaluation

CMSC330 Fall 2025

let rec eval env e =
match e with
Ident x -> lookup env x
| Num n -> n
| Plus (el,e2) ->

let nl =
let n2 =
let n3 =
n3

| Let (x,el
let vl =
let env’
let v2 =

eval env
eval env
nl+n2 in

,e2) ->
eval env

= extend env x vl in

eval env’

el in
e2 in

el in

e2 in v2

22

Adding Conditionals to Micro-OCaml

e = x|v|e + e|let x = e in e
|eq0 e | if e then eelse e

v.=n| true | false

» In terms of interpreter definitions:

type exp = type value =
| Val of wvalue Int of int
| ... (* as before *) | Bool of bool
| Eq0 of exp

| If of exp * exp * exp

CMSC330 Fall 2025 25

Rules for EQO and Booleans

A;e=>0

A: true = true

A; eq0 e = true

Aleo>v v#O0

CMSC330 Fall 2025

A: false > false

A, eq0 e > false

26

Rules for Conditionals

A;el>true A,e2>v
A;if el then e2elsee3 > v

A: el > false A, e3>v
A;if el then eZ2elsee3 > v

» Notice that only one branch is evaluated

CMSC330 Fall 2025 27

Updating the Interpreter

CMSC330 Fall 2025

let rec eval env e =

match e with
Ident x -> lookup env x

| Val v -> v

| Plus (el,e2) ->
let Int nl = eval env el in
let Int n2 = eval env e2 in
let n3 = nl+n2 in
Int n3

| Let (x,el,e2) ->
let vl = eval env el in

let env’/ = extend env x vl in
let v2 = eval env’ e2 in v2
| EqO0 el ->

let Int n = eval env el in

if n=0 then Bool true else Bool false
| If (el,e2,e3) ->

let Bool b = eval env el in

if b then eval env e2

else eval env e3

30

Adding Closures to Micro-OCami

e = x|v|e + e|let x = e in e
|eq0 e | if e then eelse e

|lee| fun x -> e |
/—\ Environment

vi=n| true| false| (A, Ax.e) Code

(id and exp)
» In terms of interpreter definitions:

type exp = type value =
| Val of wvalue Int of int
| If of exp * exp * exp | Bool of bool
(* as before *) | Closure of env * id * exp

| Call of exp * exp

| Fun of i1d * exp
CMSC330 Fall 2025 31

Rule for Closures: Lexical/Static Scoping

A;funx->e > (AAx.e)

A;el=> (A,Ax.e) A;e2>vl Ax:vl,e >v
Aiel e2 > v

» Notice
* Creating a closure captures the current environment A

e A call to a function

» evaluates the body of the closure’s code e with function closure’s
environment A’ extended with parameter x bound to argument v1

CMSC330 Fall 2025 32

Rule for Closures: Dynamic Scoping

A; fun x->e = (*,Ax.e)

A;el=> (*,Ax.e) A;e2>vl Ax:viie > v
Aiel e2 o> v

» Notice
e Creating a closure ignores the current environment A

e A call to a function

» evaluates the body of the closure’s code e with the current environment A
extended with parameter x bound to argument v1

CMSC330 Fall 2025 33

Scaling up

» Operational semantics can handle full languages

* With records, recursive variant types, objects, first-class
functions, and more

» Provides a concise notation for explaining what a
language does. Clearly shows:
* Evaluation order
e Call-by-value vs. call-by-name
e Static scoping vs. dynamic scoping
* ... We may look at more of these later

CMSC330 Fall 2025

34

ty

Lego Ci

Scaling up

35

CMSC330 Fall 2025

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Formal Semantics of a Prog. Lang.
	Slide 3: Operational semantics
	Slide 4: Micro-OCaml Expression Grammar
	Slide 5: Defining the Semantics
	Slide 6: Rules are Lego Blocks
	Slide 7: Rules of Inference: Num and Sum
	Slide 8: Rules of Inference: Let
	Slide 9: Derivations
	Slide 10: Derivations
	Slide 13: Definitional Interpreter
	Slide 14: Derivations = Interpreter Call Trees
	Slide 15: Semantics Defines Program Meaning
	Slide 16: Environment-style Semantics
	Slide 17: Environments
	Slide 18: Notation, Operations on Environments
	Slide 19: Definitional Interpreter: Environments
	Slide 20: Semantics with Environments
	Slide 21: Environment-style Rules
	Slide 22: Definitional Interpreter: Evaluation
	Slide 25: Adding Conditionals to Micro-OCaml
	Slide 26: Rules for Eq0 and Booleans
	Slide 27: Rules for Conditionals
	Slide 30: Updating the Interpreter
	Slide 31: Adding Closures to Micro-OCaml
	Slide 32: Rule for Closures: Lexical/Static Scoping
	Slide 33: Rule for Closures: Dynamic Scoping
	Slide 34: Scaling up
	Slide 35: Scaling up: Lego City

