CMSC 330: Organization of Programming Languages

Operational Semantics

Formal Semantics of a Prog. Lang.

- Mathematical description of the meaning of programs written in that language
 - What a program computes, and what it does

What does Plus (Int 1, Int 2) mean?

Operational semantics

- Define how programs execute
 - Often on an abstract machine (mathematical model of computer)
 - Analogous to interpretation
- We will define an operational semantics for Micro-Ocaml
 - And develop an interpreter for it, along the way
- Approach: use rules to define a judgment

Micro-OCaml Expression Grammar

```
e := x \mid n \mid e + e \mid let x = e1 in e2
```

Corresponding AST:

Defining the Semantics

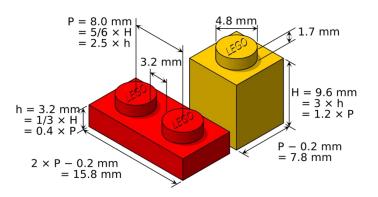
- ▶ Use rules to define judgment e ⇒ v
- ▶ Inference Rules

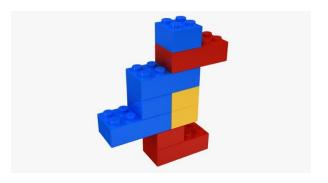
$$\forall x \big(Man(x) \to Mortal(x) \big)$$

$$\frac{Man(Socrates)}{\therefore Mortal(Socrates)}$$

$$H_1 \wedge H_2 \wedge \dots H_n \Rightarrow C$$

Rules are Lego Blocks





6

Rules of Inference: Num and Sum

```
n \Rightarrow n axiom
```

```
e1 \Rightarrow n1 e2 \Rightarrow n2 n3 is n1+n2
e1 + e2 \Rightarrow n3
```

```
match e with
| Num n -> n
| Plus (e1,e2) ->
    let n1 = eval e1 in
    let n2 = eval e2 in
    let n3 = n1 + n2 in
    n3
```

Rules of Inference: Let

```
e1 \Rightarrow v1 e2\{v1/x\} \Rightarrow v2
let x = e1 in e2 \Rightarrow v2
```

```
match e with
| Let (x,e1,e2) ->
    let v1 = eval e1 in
    let e2' = subst v1 x e2 in
    let v2 = eval e2'
in v2
```

Derivations

- When we apply rules to an expression in succession, we produce a derivation
 - It's a kind of tree, rooted at the conclusion
- Produce a derivation by goal-directed search
 - Pick a rule that could prove the goal
 - Then repeatedly apply rules on the corresponding hypotheses
 - > Goal: Show that let x = 4 in $x+3 \Rightarrow 7$

Derivations

$$e1 \Rightarrow n1 \qquad e2 \Rightarrow n2 \qquad n3 \text{ is } n1+n2$$

$$e1 + e2 \Rightarrow n3$$

$$e1 \Rightarrow v1 \qquad e2\{v1/x\} \Rightarrow v2 \qquad \qquad \text{Goal: show that}$$

$$let x = e1 \text{ in } e2 \Rightarrow v2 \qquad let x = 4 \text{ in } x+3 \Rightarrow 7$$

$$4 \Rightarrow 4 \qquad 3 \Rightarrow 3 \qquad 7 \text{ is } 4+3$$

$$4 \Rightarrow 4 \qquad 4+3 \Rightarrow 7$$

$$1 \text{ let } x = 4 \text{ in } x+3 \Rightarrow 7$$

Definitional Interpreter

The style of rules lends itself directly to the implementation of an interpreter as a recursive function

```
let rec eval (e:exp):value =
  match e with
    Ident x -> (* no rule *)
     failwith "no value"
   Num n \rightarrow n
   Plus (e1,e2) ->
     let n1 = eval e1 in
     let n2 = eval e2 in
     let n3 = n1+n2 in
     n3
  | Let (x,e1,e2) ->
     let v1 = eval e1 in
     let e2' = subst v1 \times e2 in
     let v2 = eval e2' in v2
```

```
n \Rightarrow n
e1 \Rightarrow n1 e2 \Rightarrow n2 n3 \text{ is } n1+n2
e1 + e2 \Rightarrow n3
```

$$e1 \Rightarrow v1$$
 $e2\{v1/x\} \Rightarrow v2$
let $x = e1$ in $e2 \Rightarrow v2$

Derivations = Interpreter Call Trees

$$4 \Rightarrow 4 \qquad 3 \Rightarrow 3 \qquad 7 \text{ is } 4+3$$

$$4 \Rightarrow 4 \qquad 4+3 \Rightarrow 7$$

$$1 \text{ let } \mathbf{x} = 4 \text{ in } \mathbf{x}+3 \Rightarrow 7$$

Has the same shape as the recursive call tree of the interpreter:

```
eval Num 4 \Rightarrow 4 eval Num 3 \Rightarrow 3 7 is 4+3

eval (subst 4 "x"

eval Num 4 \Rightarrow 4 Plus(Ident("x"), Num 3)) \Rightarrow 7

eval Let("x", Num 4, Plus(Ident("x"), Num 3)) \Rightarrow 7
```

Semantics Defines Program Meaning

- e ⇒ v holds if and only if a proof can be built
 - Proofs are derivations: axioms at the top, then rules whose hypotheses have been proved to the bottom
 - No proof means there exists no v for which e ⇒ v
- Proofs can be constructed bottom-up
 - In a goal-directed fashion
- ▶ Thus, function eval $e = \{v \mid e \Rightarrow v\}$
 - Determinism of semantics implies at most one element for any e
- So: Expression e means v

Environment-style Semantics

- So far, semantics used substitution to handle variables
 - As we evaluate, we replace all occurrences of a variable x with values it is bound to
- An alternative semantics, closer to a real implementation, is to use an environment
 - As we evaluate, we maintain an explicit map from variables to values, and look up variables as we see them

Environments

- Mathematically, an environment is a partial function from identifiers to values
 - If A is an environment, and x is an identifier, then A(x) can either be
 - > a value **v** (intuition: the value of the variable stored on the stack)
 - > undefined (intuition: the variable has not been declared)
- An environment can visualized as a table
 - If A is

ld	Val
x	0
У	2

• then A(x) is 0, A(y) is 2, and A(z) is undefined

Notation, Operations on Environments

- is the empty environment
- A,x:v is the environment that extends A with a mapping from x to v
 - Sometimes just write x:v instead of •,x:v for brevity
- ▶ Lookup A(x) is defined as follows

•(x) = undefined

$$(A, y:v)(x) = \begin{cases} v & \text{if } x = y \\ A(x) & \text{if } x <> y \text{ and } A(x) \text{ defined} \end{cases}$$
undefined otherwise

Definitional Interpreter: Environments

```
type env = (id * value) list

let extend env x v = (x,v)::env

let rec lookup env x =
  match env with
  [] -> failwith "undefined"
  | (y,v)::env' ->
  if x = y then v
  else lookup env' x
```

An environment is just a list of mappings, which are just pairs of variable to value - called an association list

Semantics with Environments

▶ The environment semantics changes the judgment

$$e \Rightarrow v$$

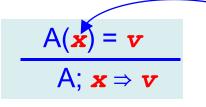
to be

A;
$$e \Rightarrow v$$

where A is an environment

• Idea: A is used to give values to the identifiers in e

Environment-style Rules



Look up variable x in environment A

```
A; e1 \Rightarrow v1 A,x:v1; e2 \Rightarrow v2
A; let x = e1 in e2 \Rightarrow v2
```

Extend environment A with mapping from x to v1

A;
$$e1 \Rightarrow n1$$
 A; $e2 \Rightarrow n2$ $n3$ is $n1+n2$
A; $e1 + e2 \Rightarrow n3$

Definitional Interpreter: Evaluation

```
let rec eval env e =
  match e with
    Ident x -> lookup env x
   Num n \rightarrow n
  | Plus (e1,e2) ->
     let n1 = eval env e1 in
     let n2 = eval env e2 in
     let n3 = n1+n2 in
     n3
   Let (x,e1,e2) \rightarrow
     let v1 = eval env e1 in
     let env' = extend env x v1 in
     let v2 = eval ev v' e2 in v2
```

Adding Conditionals to Micro-OCaml

```
e ::= x | v | e + e | let x = e in e
| eq0 e | if e then e else e

v ::= n | true | false
```

In terms of interpreter definitions:

Rules for Eq0 and Booleans

A; $e \Rightarrow 0$ A; true \Rightarrow true

A; $eq0 e \Rightarrow$ true

A; $e \Rightarrow v \neq 0$ A; false \Rightarrow false

A; $eq0 e \Rightarrow$ false

Rules for Conditionals

A;
$$e1 \Rightarrow \text{true} \quad A$$
; $e2 \Rightarrow v$

A; if $e1$ then $e2$ else $e3 \Rightarrow v$

A; $e1 \Rightarrow \text{false} \quad A$; $e3 \Rightarrow v$

A; if $e1$ then $e2$ else $e3 \Rightarrow v$

Notice that only one branch is evaluated

Updating the Interpreter

```
let rec eval env e =
 match e with
    Ident x -> lookup env x
  | Val v -> v
  | Plus (e1,e2) ->
     let Int n1 = eval env e1 in
     let Int n2 = eval env e2 in
    let n3 = n1+n2 in
     Int n3
  | Let (x,e1,e2) ->
     let v1 = eval env e1 in
     let env' = extend env x v1 in
     let v2 = eval env' e2 in v2
  | Eq0 e1 ->
    let Int n = eval env e1 in
     if n=0 then Bool true else Bool false
  | If (e1,e2,e3) ->
     let Bool b = eval env e1 in
     if b then eval env e2
     else eval env e3
```

Adding Closures to Micro-OCaml

```
e := x | v | e + e | let x = e in e
                eq0 e | if e then e else e
                | e e | fun x -> e
                                                        Environment
           \mathbf{v} := \mathbf{n} \mid \text{true} \mid \text{false} \mid (A, \lambda \mathbf{x}. \mathbf{e})
                                                                Code
                                                                (id and exp)
In terms of interpreter definitions:
  type exp =
                                    type value =
     | Val of value
                                         Int of int
       If of exp * exp * exp
                                      | Bool of bool
      ... (* as before *)
                                      | Closure of env * id * exp
     | Call of exp * exp
       Fun of id * exp
```

Rule for Closures: Lexical/Static Scoping

A; fun
$$x \rightarrow e \Rightarrow (A, \lambda x. e)$$

A; e1 \Rightarrow (A', $\lambda x. e$)

A; e2 \Rightarrow v1 A', $x: v1; e \Rightarrow v$

A; e1 e2 \Rightarrow v

Notice

- Creating a closure captures the current environment A
- A call to a function
 - > evaluates the body of the closure's code e with function closure's environment A' extended with parameter x bound to argument v1

Rule for Closures: Dynamic Scoping

A; fun
$$x \rightarrow e \Rightarrow (\bullet, \lambda x. e)$$

A; $e1 \Rightarrow (\bullet, \lambda x. e)$

A; $e2 \Rightarrow v1$

A; $e1 \Rightarrow v$

A; $e1 \Rightarrow v$

Notice

- Creating a closure ignores the current environment A
- A call to a function
 - > evaluates the body of the closure's code e with the current environment A extended with parameter x bound to argument v1

Scaling up

- Operational semantics can handle full languages
 - With records, recursive variant types, objects, first-class functions, and more
- Provides a concise notation for explaining what a language does. Clearly shows:
 - Evaluation order
 - Call-by-value vs. call-by-name
 - Static scoping vs. dynamic scoping
 - ... We may look at more of these later

Scaling up: Lego City

