
CMSC 330: Organization of Programming

Languages

Context Free Grammars

1CMSC330 Fall 2025

Interpreters

2

Front End

Parser

Optional

Static

Analyzer

(e.g., Type

Checker)

Source

Abstract

Syntax Tree (AST),
a kind of

intermediate

representation (IR)

CMSC330 Fall 2025

Back End

Evaluato

r

the part we

write in the

definitional

interpreter

Input

Output

Compilers are similar, but replace the evaluator with

modules that generate code, rather than run it

Implementing the Front End

Goal: Convert program text into an Abstract Syntax Tree

ASTs are easier to work with

• Analyze, optimize, execute the program

Do this using regular expressions?

• Won’t work!

• Regular expressions cannot reliably parse paired braces {{ … }},

parentheses (((…))), etc.

Instead: Regexps for tokens (scanning), and Context

Free Grammars for parsing tokens

3CMSC330 Fall 2025

Front End – Scanner and Parser

4

Front End

Source Scanner Parser
Token

Stream

• Scanner / lexer converts program source into tokens (keywords,

variable names, operators, numbers, etc.) using regular expressions

• Parser converts tokens into an AST (abstract syntax tree). Parsers

recognize strings defined as context free grammars

CMSC330 Fall 2025

Context-Free Grammar (CFG)

A way of describing sets of strings (= languages)

• The notation L(G) denotes the language of strings defined by

grammar G

Example grammar G is S → 0S | 1S | 

 which says that string s’ ∊ L(G) iff

• s’ = , or ∃s ∊ L(G) such that s’ = 0s, or s’ = 1s

Grammar is same as regular expression (0|1)*

• Generates / accepts the same set of strings

5CMSC330 Fall 2025

CFGs Are Expressive

CFGs subsume REs, DFAs, NFAs

• There is a CFG that generates any regular language

• But: REs are often better notation for those languages

And CFGs can define languages regexps cannot

• S → (S) |  // represents balanced pairs of ()’s

As a result, CFGs often used as the basis of parsers for

programming languages

6CMSC330 Fall 2025

Parsing with CFGs

CFGs formally define languages, but they do not define an

algorithm for accepting strings

Several styles of algorithm; each works only for less

expressive forms of CFG

• LL(k) parsing

• LR(k) parsing

• LALR(k) parsing

• SLR(k) parsing

Tools exist for building parsers from grammars

• JavaCC, Yacc, etc.

7

We will discuss this next lecture

CMSC330 Fall 2025

Formal Definition: Context-Free Grammar

A CFG G is a 4-tuple (Σ, N, P, S)

• Σ – alphabet (finite set of symbols, or terminals)

➢ Often written in lowercase

• N – a finite, nonempty set of nonterminal symbols

➢ Often written in UPPERCASE

➢ It must be that N ∩ Σ = ∅

• P – a set of productions of the form N → (Σ|N)*

➢ Informally: the nonterminal can be replaced by the string of zero or more

terminals / nonterminals to the right of the →

➢ Can think of productions as rewriting rules (more later)

• S ∊ N – the start symbol

8CMSC330 Fall 2025

Notational Shortcuts

A production is of the form

• left-hand side (LHS) → right hand side (RHS)

If not specified
• Assume LHS of first production is the start symbol

Productions with the same LHS

• Are usually combined with |

If a production has an empty RHS
• It means the RHS is ε

S → aBc // S is start symbol

A → aA
 | b // A → b

 | // A → 

9

S → aBc

CMSC330 Fall 2025

Aside: Backus-Naur Form

Context-free grammar production rules are also called
Backus-Naur Form or BNF
• Designed by John Backus and Peter Naur

➢ Chair and Secretary of the Algol committee in the early 1960s. Used this
notation to describe Algol in 1962

A production A → B c D

 is written in BNF as <A> ::= c <D>

10CMSC330 Fall 2025

Generating Strings

Think of a grammar as generating strings by rewriting

• Beginning with the start symbol, repeatedly rewrite a nonterminal

per a production in the grammar (replace LHS with RHS)

Example grammar G

 S → 0S | 1S | 

Generate string 011 from G as follows:

S ⇒ 0S // using S → 0S

 ⇒ 01S // using S → 1S

 ⇒ 011S // using S → 1S

 ⇒ 011 // using S → 

11CMSC330 Fall 2025

Accepting Strings (Informally)

Checking if s ∈ L(G) is called acceptance

• Algorithm: Find a rewriting from G’s start symbol that yields s

➢ 011 ∈ L(G) according to the previous rewriting

Terminology

• Such a sequence of rewrites is a derivation or parse

• Discovering the derivation is called parsing

12CMSC330 Fall 2025

Derivations

Notation

⇒ indicates a derivation of one step

⇒+ indicates a derivation of one or more steps

⇒* indicates a derivation of zero or more steps

Example

• S → 0S | 1S | 

For the string 010

• S ⇒ 0S ⇒ 01S ⇒ 010S ⇒ 010

• S ⇒+ 010

• 010 ⇒* 010

13CMSC330 Fall 2025

Language Generated by Grammar

L(G) the language defined by G is

L(G) = { s ∊ Σ* | S ⇒+ s }

• S is the start symbol of the grammar

• Σ is the alphabet for that grammar

In other words

• All strings over Σ that can be derived from the start symbol via

one or more productions

14CMSC330 Fall 2025

Quiz #1

Consider the grammar

 S → bS | T

 T → aT | U

 U → cU | ε

Which of the following strings is generated by this grammar?

A. aba

B. ccc

C. bab

D. ca

15CMSC330 Fall 2025

Quiz #1

Consider the grammar

 S → bS | T

 T → aT | U

 U → cU | ε

Which of the following strings is generated by this grammar?

A. aba

B. ccc

C. bab

D. ca

16CMSC330 Fall 2025

Quiz #2

Consider the grammar

 S → bS | T

 T → aT | U

 U → cU | ε

Which of the following is a derivation of the string aac?

A. S ⇒ T ⇒ aT ⇒ aTaT ⇒ aaT ⇒ aacU ⇒ aac

B. S ⇒ T ⇒ U ⇒ aU ⇒ aaU ⇒ aacU ⇒ aac

C. S ⇒ aT ⇒ aaT ⇒ aaU ⇒ aacU ⇒ aac

D. S ⇒ T ⇒ aT ⇒ aaT ⇒ aaU ⇒ aacU ⇒ aac

17CMSC330 Fall 2025

Quiz #2

Consider the grammar

 S → bS | T

 T → aT | U

 U → cU | ε

Which of the following is a derivation of the string aac?

A. S ⇒ T ⇒ aT ⇒ aTaT ⇒ aaT ⇒ aacU ⇒ aac

B. S ⇒ T ⇒ U ⇒ aU ⇒ aaU ⇒ aacU ⇒ aac

C. S ⇒ aT ⇒ aaT ⇒ aaU ⇒ aacU ⇒ aac

D. S ⇒ T ⇒ aT ⇒ aaT ⇒ aaU ⇒ aacU ⇒ aac

18CMSC330 Fall 2025

Quiz #3

Consider the grammar

 S → bS | T

 T → aT | U

 U → cU | ε

Which of the following regular expressions accepts the same

language as this grammar?

A. (a|b|c)*

B. b*a*c*

C. (b|ba|bac)*

D. bac*

19CMSC330 Fall 2025

Quiz #3

Consider the grammar

 S → bS | T

 T → aT | U

 U → cU | ε

Which of the following regular expressions accepts the same

language as this grammar?

A. (a|b|c)*

B. b*a*c*

C. (b|ba|bac)*

D. bac*

20CMSC330 Fall 2025

Designing Grammars

1. Use recursive productions to generate an arbitrary

number of symbols

 A → xA | ε // Zero or more x’s

 A → yA | y // One or more y’s

2. Use separate non-terminals to generate disjoint parts of

a language, and then combine in a production

 a*b* // a’s followed by b’s

 S → AB

 A → aA | ε // Zero or more a’s

 B → bB | ε // Zero or more b’s

23CMSC330 Fall 2025

Designing Grammars

3. To generate languages with matching, balanced, or

related numbers of symbols, write productions which

generate strings from the middle

 {anbn | n ≥ 0} // N a’s followed by N b’s

 S → aSb | ε

 Example derivation: S ⇒ aSb ⇒ aaSbb ⇒ aabb

 {anb2n | n ≥ 0} // N a’s followed by 2N b’s

 S → aSbb | ε

 Example derivation: S ⇒ aSbb ⇒ aaSbbbb ⇒ aabbbb

24CMSC330 Fall 2025

Designing Grammars

4. For a language that is the union of other languages, use
separate nonterminals for each part of the union and
then combine
{ an(bm|cm) | m > n ≥ 0}

Can be rewritten as

{ anbm | m > n ≥ 0} ∪ { ancm | m > n ≥ 0}

 S → T | V

 T → aTb | U

 U → Ub | b

 V → aVc | W

 W → Wc | c

25CMSC330 Fall 2025

Practice

Try to make a grammar which accepts

• 0*|1* • 0n1n where n ≥ 0

Give some example strings from this language

• S → 0 | 1S

➢ 0, 10, 110, 1110, 11110, …

• What language is it, as a regexp?

➢ 1*0

S → A | B

A → 0A | ε

B → 1B | ε

S → 0S1 | ε

26CMSC330 Fall 2025

Quiz #4

Which of the following grammars describes the same

language as 0n1m where m ≤ n ?

 A. S → 0S1 | ε

 B. S → 0S1 | S1 | ε

 C. S → 0S1 | 0S | ε

 D. S → SS | 0 | 1 | ε

27CMSC330 Fall 2025

Quiz #4

Which of the following grammars describes the same

language as 0n1m where m ≤ n ?

 A. S → 0S1 | ε same number of 0 and 1

 B. S → 0S1 | S1 | ε more 1’s

 C. S → 0S1 | 0S | ε more 0’s

 D. S → SS | 0 | 1 | ε no control of the number

28CMSC330 Fall 2025

Parse Trees

Parse tree shows how a string is produced by a grammar

• Will be useful for spotting ambiguity; discussed later

• Root node of parse tree is the start symbol

• Every internal node is a nonterminal

• Children of an internal node

➢ Are symbols on RHS of production applied to nonterminal

• Every leaf node is a terminal or ε

Reading the leaves left to right

• Shows the string corresponding to the tree

29CMSC330 Fall 2025

Parse Tree Example

S → aS | T

 T → bT | U

 U → cU | ε

S

30

S

CMSC330 Fall 2025

Parse Tree Example

S ⇒ aS

31

S

Sa

CMSC330 Fall 2025

S → aS | T

 T → bT | U

 U → cU | ε

Parse Tree Example

S → aS | T

 T → bT | U

 U → cU | ε

S ⇒ aS ⇒ aT

32

S

S

T

a

CMSC330 Fall 2025

Parse Tree Example

S → aS | T

 T → bT | U

 U → cU | ε

S ⇒ aS ⇒ aT ⇒ aU

33

S

S

T

U

a

CMSC330 Fall 2025

Parse Tree Example

S → aS | T

 T → bT | U

 U → cU | ε

S ⇒ aS ⇒ aT ⇒ aU ⇒ acU

34

S

S

T

U

U

a

c

CMSC330 Fall 2025

Parse Tree Example

S → aS | T

 T → bT | U

 U → cU | ε

S ⇒ aS ⇒ aT ⇒ aU ⇒ acU ⇒ ac

35

S

S

T

U

U

a

c

ε

CMSC330 Fall 2025

CFGs and ASTs

An abstract syntax tree is a data structure that represents

a parsed input, e.g., a program expression

• An AST can be expressed with an OCaml datatype that is very

close to the CFG that describes the language syntax

CFG for arithmetic expressions:

E → a | b | c | d

 | E+E

 | E-E

 | E*E

 | (E)

38CMSC330 Fall 2025

AST:

type expr = A | B | C | D

 | Plus of expr * expr

 | Minus of expr * expr

 | Mult of expr * expr

Eventual Goal: Parse a CFG to get an AST

CFG (string):

E → a | b | c | d

 | E+E

 | E-E

 | E*E

 | (E)

39CMSC330 Fall 2025

AST definition (OCaml):

type expr = A | B | C | D

 | Plus of expr * expr

 | Minus of expr * expr

 | Mult of expr * expr

a-(b*a) parses to Minus (A, Mult (B,A))

c*(b+d) parses to Mult (C, Plus (B,D))

a-c parses to Minus (A, C)

Parse Trees for Expressions

A parse tree shows the structure of an expression as it

corresponds to a grammar

 E → a | b | c | d | E+E | E-E | E*E | (E)

 a a*c c*(b+d)

40CMSC330 Fall 2025

Parse Trees for Expressions

A parse tree shows the structure of an expression as it

corresponds to a grammar

 E → a | b | c | d | E+E | E-E | E*E | (E)

 a a*c c*(b+d)

41CMSC330 Fall 2025

A parse tree and an AST are not the same thing

• The latter is a data structure produced by parsing

Abstract Syntax Trees

42

a*c c*(b+d)

*

a c

Mult(A,C)

*

c +

b d

Mult(C,Plus(B,D))

Parse trees

ASTs

CMSC330 Fall 2025

We will show how

to parse to an AST

in the next lecture

Practice

E → a | b | c | d | E+E | E-E | E*E | (E)

Make a parse tree for…

• a*b

• a+(b-c)

• d*(d+b)-a

• (a+b)*(c-d)

• a+(b-c)*d

43CMSC330 Fall 2025

44

Leftmost and Rightmost Derivation

Leftmost derivation

• Leftmost nonterminal is replaced in each step

Rightmost derivation

• Rightmost nonterminal is replaced in each step

Example

• Grammar

➢ S → AB, A → a, B → b

• Leftmost derivation for “ab”
➢ S ⇒ AB ⇒ aB ⇒ ab

• Rightmost derivation for “ab”
➢ S ⇒ AB ⇒ Ab ⇒ ab

CMSC330 Fall 2025

45

Parse Tree For Derivations

Parse tree may be same for both leftmost & rightmost

derivations

• Example Grammar: S → a | SbS String: aba

Leftmost Derivation

 S ⇒ SbS ⇒ abS ⇒ aba

Rightmost Derivation

 S ⇒ SbS ⇒ Sba ⇒ aba

• Parse trees don’t show order productions are applied

• Every parse tree has a unique leftmost and a unique

rightmost derivation

CMSC330 Fall 2025

46

Parse Tree For Derivations (cont.)

Not every string has a unique parse tree

• Example Grammar: S → a | SbS String: ababa

Leftmost Derivation

 S ⇒ SbS ⇒ abS ⇒ abSbS ⇒ ababS ⇒ ababa

Another Leftmost Derivation

 S ⇒ SbS ⇒ SbSbS ⇒ abSbS ⇒ ababS ⇒ ababa

CMSC330 Fall 2025

Ambiguity

A grammar is ambiguous if a string may have multiple

leftmost derivations

47CMSC330 Fall 2025

I saw a girl with a

telescope.

Ambiguity

A grammar is ambiguous if a string may have multiple

leftmost derivations

• Equivalent to multiple parse trees

• Can be hard to determine

1. S → aS | T

 T → bT | U

 U → cU | ε

2. S → T | T

 T → Tx | Tx | x | x

3. S → SS | () | (S)

No

Yes

?

48CMSC330 Fall 2025

Ambiguity (cont.)

Example

• Grammar: S → SS | () | (S) String: ()()()

• 2 distinct (leftmost) derivations (and parse trees)

➢S  SS  SSS ()SS ()()S ()()()

➢S  SS  ()S ()SS ()()S ()()()

49CMSC330 Fall 2025

CFGs for Programming Languages

Recall that our goal is to describe programming languages

with CFGs

We had the following example which describes limited

arithmetic expressions

E → a | b | c | E+E | E-E | E*E | (E)

What’s wrong with using this grammar?

• It’s ambiguous!

50CMSC330 Fall 2025

Example: a-b-c

E ⇒ E-E ⇒ a-E ⇒ a-E-E ⇒

a-b-E ⇒ a-b-c

E ⇒ E-E ⇒ E-E-E ⇒

 a-E-E ⇒ a-b-E ⇒ a-b-c

Corresponds to a-(b-c) Corresponds to (a-b)-c

51CMSC330 Fall 2025

Example: a-b*c

E ⇒ E-E ⇒ a-E ⇒ a-E*E ⇒

a-b*E ⇒ a-b*c

E ⇒ E-E ⇒ E-E*E ⇒

 a-E*E ⇒ a-b*E ⇒ a-b*c

Corresponds to a-(b*c) Corresponds to (a-b)*c

*

*

52CMSC330 Fall 2025

Another Example: If-Then-Else

<stmt> → <assignment> | <if-stmt> | ...

 <if-stmt> → if (<expr>) <stmt> |

 if (<expr>) <stmt> else <stmt>

 (Recall < >’s are used to denote nonterminals)

Consider the following program fragment
 if (x > y)

 if (x < z)

 a = 1;

 else a = 2;

 (Note: Ignore newlines)

53

Aka the dangling else problem

CMSC330 Fall 2025

Two Parse Trees

54

if (x > y)
 if (x < z)
 a = 1;
 else a = 2;

CMSC330 Fall 2025

Quiz #5

Which of the following grammars is ambiguous?

 A. S → 0SS1 | 0S1 | ε

 B. S → A1S1A | ε

 A → 0

 C. S → (S, S, S) | 1

 D. None of the above.

55CMSC330 Fall 2025

Quiz #5

Which of the following grammars is ambiguous?

 A. S → 0SS1 | 0S1 | ε

 B. S → A1S1A | ε

 A → 0

 C. S → (S, S, S) | 1

 D. None of the above.

56CMSC330 Fall 2025

S →0SS1 →0S1 →01

S →0S1 →01

Dealing With Ambiguous Grammars

Ambiguity is bad

• Syntax is correct

• But semantics differ depending on choice

➢ Different associativity (a-b)-c vs. a-(b-c)

➢ Different precedence (a-b)*c vs. a-(b*c)

➢ Different control flow if (if else) vs. if (if) else

Two approaches

• Rewrite grammar

➢ Grammars are not unique – can have multiple grammars for the same

language. But result in different parses.

• Use special parsing rules

➢ Depending on parsing tool

57CMSC330 Fall 2025

Fixing the Expression Grammar

Require right operand to not be bare expression

 E → E+T | E-T | E*T | T

 T → a | b | c | (E)

Corresponds to left associativity

Now only one parse tree for a-b-c

• Find derivation

59CMSC330 Fall 2025

What if we want Right Associativity?

Left-recursive productions

• Used for left-associative operators

• Example

 E → E+T | E-T | E*T | T

 T → a | b | c | (E)

Right-recursive productions

• Used for right-associative operators

• Example

 E → T+E | T-E | T*E | T

 T → a | b | c | (E)

60CMSC330 Fall 2025

A Different Problem

How about the string a+b*c ?

E → E+T | E-T | E*T | T

T → a | b | c | (E)

Doesn’t have correct

 precedence for *

• When a nonterminal has productions for several operators,

they effectively have the same precedence

Solution – Introduce new nonterminals

62CMSC330 Fall 2025

Final Expression Grammar

E → E+T | E-T | T lowest precedence operators

T → T*P | P higher precedence

P → a | b | c | (E) highest precedence (parentheses)

63CMSC330 Fall 2025

Derivation of a+b*c:

E → E+T→T+T→P+T→a+T→a+T*P→a+P*P→a+b*P→a+b*c

Fixing the Expression Grammar

64

Controlling precedence of operators

• Introduce new nonterminals

• Precedence increases closer to operands

Controlling associativity of operators

• Introduce new nonterminals

• Assign associativity based on production form

➢ E → E+T (left associative) vs. E → T+E (right associative)

➢ But parsing method might limit form of rules

CMSC330 Fall 2025

Conclusion

Context Free Grammars (CFGs) can describe

programming language syntax

• They are a kind of formal language that is more powerful than

regular expressions

CFGs can also be used as the basis for programming

language parsers (details later)

• But the grammar should not be ambiguous

➢ May need to change more natural grammar to make it so

• Parsing often aims to produce abstract syntax trees

➢ Data structure that records the key elements of program

65CMSC330 Fall 2025

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Interpreters
	Slide 3: Implementing the Front End
	Slide 4: Front End – Scanner and Parser
	Slide 5: Context-Free Grammar (CFG)
	Slide 6: CFGs Are Expressive
	Slide 7: Parsing with CFGs
	Slide 8: Formal Definition: Context-Free Grammar
	Slide 9: Notational Shortcuts
	Slide 10: Aside: Backus-Naur Form
	Slide 11: Generating Strings
	Slide 12: Accepting Strings (Informally)
	Slide 13: Derivations
	Slide 14: Language Generated by Grammar
	Slide 15: Quiz #1
	Slide 16: Quiz #1
	Slide 17: Quiz #2
	Slide 18: Quiz #2
	Slide 19: Quiz #3
	Slide 20: Quiz #3
	Slide 23: Designing Grammars
	Slide 24: Designing Grammars
	Slide 25: Designing Grammars
	Slide 26: Practice
	Slide 27: Quiz #4
	Slide 28: Quiz #4
	Slide 29: Parse Trees
	Slide 30: Parse Tree Example
	Slide 31: Parse Tree Example
	Slide 32: Parse Tree Example
	Slide 33: Parse Tree Example
	Slide 34: Parse Tree Example
	Slide 35: Parse Tree Example
	Slide 38: CFGs and ASTs
	Slide 39: Eventual Goal: Parse a CFG to get an AST
	Slide 40: Parse Trees for Expressions
	Slide 41: Parse Trees for Expressions
	Slide 42: Abstract Syntax Trees
	Slide 43: Practice
	Slide 44: Leftmost and Rightmost Derivation
	Slide 45: Parse Tree For Derivations
	Slide 46: Parse Tree For Derivations (cont.)
	Slide 47: Ambiguity
	Slide 48: Ambiguity
	Slide 49: Ambiguity (cont.)
	Slide 50: CFGs for Programming Languages
	Slide 51: Example: a-b-c
	Slide 52: Example: a-b*c
	Slide 53: Another Example: If-Then-Else
	Slide 54: Two Parse Trees
	Slide 55: Quiz #5
	Slide 56: Quiz #5
	Slide 57: Dealing With Ambiguous Grammars
	Slide 59: Fixing the Expression Grammar
	Slide 60: What if we want Right Associativity?
	Slide 62: A Different Problem
	Slide 63: Final Expression Grammar
	Slide 64: Fixing the Expression Grammar
	Slide 65: Conclusion

