
CMSC 330:  Organization of Programming 
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Context Free Grammars
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Implementing the Front End

Goal: Convert program text into an Abstract Syntax Tree

ASTs are easier to work with

• Analyze, optimize, execute the program

Do this using regular expressions?

• Won’t work!

• Regular expressions cannot reliably parse paired braces {{ … }}, 

parentheses ((( … ))), etc.

Instead: Regexps for tokens (scanning), and Context 

Free Grammars for parsing tokens
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Front End – Scanner and Parser

4

Front End

Source Scanner Parser
Token

Stream

• Scanner / lexer converts program source into tokens (keywords, 

variable names, operators, numbers, etc.) using regular expressions

• Parser converts tokens into an AST (abstract syntax tree). Parsers 

recognize strings defined as context free grammars
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Context-Free Grammar (CFG)

A way of describing sets of strings (= languages)

• The notation L(G) denotes the language of strings defined by 

grammar G

Example grammar G is S → 0S | 1S | 

     which says that string s’ ∊ L(G) iff 

• s’ = , or ∃s ∊ L(G) such that s’ = 0s, or s’ = 1s

Grammar is same as regular expression (0|1)* 

• Generates / accepts the same set of strings
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CFGs Are Expressive

CFGs subsume REs, DFAs, NFAs

• There is a CFG that generates any regular language

• But: REs are often better notation for those languages

And CFGs can define languages regexps cannot

• S → ( S ) |  // represents balanced pairs of ( )’s

As a result, CFGs often used as the basis of parsers for 

programming languages
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Parsing with CFGs

CFGs formally define languages, but they do not define an 

algorithm for accepting strings

Several styles of algorithm; each works only for less 

expressive forms of CFG

• LL(k) parsing

• LR(k) parsing

• LALR(k) parsing

• SLR(k) parsing

Tools exist for building parsers from grammars

• JavaCC, Yacc, etc.

7

We will discuss this next lecture
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Formal Definition:  Context-Free Grammar

A CFG G is a 4-tuple (Σ, N, P, S)

• Σ – alphabet (finite set of symbols, or terminals)

➢ Often written in lowercase

• N – a finite, nonempty set of nonterminal symbols

➢ Often written in UPPERCASE

➢ It must be that N ∩ Σ = ∅

• P – a set of productions of the form N → (Σ|N)*

➢ Informally: the nonterminal can be replaced by the string of zero or more 

terminals / nonterminals to the right of the →

➢ Can think of productions as rewriting rules (more later)

• S ∊ N – the start symbol
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Notational Shortcuts

A production is of the form

• left-hand side (LHS) → right hand side (RHS)

If not specified
• Assume LHS of first production is the start symbol

Productions with the same LHS

• Are usually combined with |

If a production has an empty RHS
• It means the RHS is ε

S → aBc   // S is start symbol

A → aA 
    |   b  // A → b 

    |   // A →  

9

S → aBc
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Aside: Backus-Naur Form

Context-free grammar production rules are also called 
Backus-Naur Form or BNF
• Designed by John Backus and Peter Naur

➢ Chair and Secretary of the Algol committee in the early 1960s. Used this 
notation to describe Algol in 1962

A production  A → B c D 

    is written in BNF as  <A> ::= <B> c <D> 
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Generating Strings

Think of a grammar as generating strings by rewriting

• Beginning with the start symbol, repeatedly rewrite a nonterminal 

per a production in the grammar (replace LHS with RHS)

Example grammar G

    S → 0S | 1S |  

Generate string 011 from G as follows:   

S ⇒ 0S  // using S → 0S

 ⇒ 01S  // using S → 1S

 ⇒ 011S  // using S → 1S

 ⇒ 011  // using S → 
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Accepting Strings (Informally)

Checking if s ∈ L(G) is called acceptance

• Algorithm: Find a rewriting from G’s start symbol that yields s

➢ 011 ∈ L(G) according to the previous rewriting

Terminology

• Such a sequence of rewrites is a derivation or parse

• Discovering the derivation is called parsing
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Derivations

Notation 

⇒  indicates a derivation of one step

⇒+ indicates a derivation of one or more steps

⇒* indicates a derivation of zero or more steps

Example

• S → 0S | 1S | 

For the string 010

• S ⇒ 0S ⇒ 01S ⇒ 010S ⇒ 010

• S ⇒+ 010

• 010 ⇒* 010
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Language Generated by Grammar

L(G) the language defined by G is

L(G) = { s ∊ Σ* | S ⇒+ s }

• S is the start symbol of the grammar 

• Σ is the alphabet for that grammar

In other words

• All strings over Σ that can be derived from the start symbol via 

one or more productions
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Quiz #1

Consider the grammar 

 S → bS | T

 T → aT | U

 U → cU | ε

Which of the following strings is generated by this grammar?

A. aba 

B. ccc

C. bab

D. ca
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Quiz #2

Consider the grammar 

 S → bS | T

 T → aT | U

 U → cU | ε

Which of the following is a derivation of the string aac?

A. S ⇒ T ⇒ aT ⇒ aTaT ⇒ aaT ⇒ aacU ⇒ aac

B. S ⇒ T ⇒ U ⇒ aU ⇒ aaU ⇒ aacU ⇒ aac

C. S ⇒ aT ⇒ aaT ⇒ aaU ⇒ aacU ⇒ aac

D. S ⇒ T ⇒ aT ⇒ aaT ⇒ aaU ⇒ aacU ⇒ aac
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Quiz #3

Consider the grammar 

 S → bS | T

 T → aT | U

 U → cU | ε

Which of the following regular expressions accepts the same 

language as this grammar?

A. (a|b|c)*

B. b*a*c*

C. (b|ba|bac)*

D. bac*
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Designing Grammars

1. Use recursive productions to generate an arbitrary 

number of symbols

 A → xA | ε  // Zero or more x’s

 A → yA | y  // One or more y’s

2. Use separate non-terminals to generate disjoint parts of 

a language, and then combine in a production

 a*b*   // a’s followed by b’s

 S → AB

 A → aA | ε  // Zero or more a’s

 B → bB | ε  // Zero or more b’s
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Designing Grammars

3. To generate languages with matching, balanced, or 

related numbers of symbols, write productions which 

generate strings from the middle

 {anbn | n ≥ 0}  // N a’s followed by N b’s

 S → aSb | ε

 Example derivation:  S ⇒ aSb ⇒ aaSbb ⇒ aabb

 {anb2n | n ≥ 0} // N a’s followed by 2N b’s

 S → aSbb | ε

 Example derivation:  S ⇒ aSbb ⇒ aaSbbbb ⇒ aabbbb
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Designing Grammars

4. For a language that is the union of other languages, use 
separate nonterminals for each part of the union and 
then combine
{ an(bm|cm) | m > n ≥ 0}

Can be rewritten as

{ anbm | m > n ≥ 0} ∪ { ancm | m > n ≥ 0}

 S → T | V

 T → aTb | U

    U → Ub | b
 

 V → aVc | W 

 W → Wc | c
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Practice

Try to make a grammar which accepts

• 0*|1*          • 0n1n where n ≥ 0 

Give some example strings from this language

• S → 0 | 1S

➢ 0, 10, 110, 1110, 11110, …

• What language is it, as a regexp?

➢ 1*0

S → A | B

A → 0A | ε

B → 1B | ε

S → 0S1 | ε
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Quiz #4

Which of the following grammars describes the same 

language as 0n1m where m ≤ n ?

 A.   S → 0S1 | ε

 B.   S → 0S1 | S1 | ε

 C.   S → 0S1 | 0S | ε

 D.   S → SS | 0 | 1 | ε
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Quiz #4

Which of the following grammars describes the same 

language as 0n1m where m ≤ n ?

 A.   S → 0S1 | ε   same number of 0 and 1

 B.   S → 0S1 | S1 | ε more 1’s 

 C.   S → 0S1 | 0S | ε more 0’s

 D.   S → SS | 0 | 1 | ε no control of the number 
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Parse Trees

Parse tree shows how a string is produced by a grammar

• Will be useful for spotting ambiguity; discussed later

• Root node of parse tree is the start symbol

• Every internal node is a nonterminal

• Children of an internal node 

➢ Are symbols on RHS of production applied to nonterminal

• Every leaf node is a terminal or ε

Reading the leaves left to right 

• Shows the string corresponding to the tree
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Parse Tree Example

S → aS | T

 T → bT | U

 U → cU | ε

S

30

S
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Parse Tree Example

S ⇒ aS

31

S

Sa
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S → aS | T

 T → bT | U

 U → cU | ε



Parse Tree Example

S → aS | T

 T → bT | U

 U → cU | ε

S ⇒ aS ⇒ aT

32

S

S

T

a

CMSC330 Fall 2025



Parse Tree Example

S → aS | T

 T → bT | U

 U → cU | ε

S ⇒ aS ⇒ aT ⇒ aU
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S

S

T

U

a
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Parse Tree Example

S → aS | T

 T → bT | U

 U → cU | ε

S ⇒ aS ⇒ aT ⇒ aU ⇒ acU

34

S

S

T

U

U

a

c
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Parse Tree Example

S → aS | T

 T → bT | U

 U → cU | ε

S ⇒ aS ⇒ aT ⇒ aU ⇒ acU ⇒ ac
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CFGs and ASTs

An abstract syntax tree is a data structure that represents 

a parsed input, e.g., a program expression

• An AST can be expressed with an OCaml datatype that is very 

close to the CFG that describes the language syntax

CFG for arithmetic expressions:

E →   a | b | c | d 

 | E+E  

           | E-E

 | E*E 

 | (E)
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AST:

type expr = A | B | C | D

  | Plus of expr * expr

  | Minus of expr * expr

  | Mult of expr * expr



Eventual Goal: Parse a CFG to get an AST

CFG (string):

E →   a | b | c | d 

 | E+E  

           | E-E

 | E*E 

 | (E)
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AST definition (OCaml):

type expr = A | B | C | D

  | Plus of expr * expr

  | Minus of expr * expr

  | Mult of expr * expr

a-(b*a)    parses to Minus (A, Mult (B,A))

c*(b+d)   parses to Mult (C, Plus (B,D))

a-c          parses to Minus (A, C)



Parse Trees for Expressions

A parse tree shows the structure of an expression as it 

corresponds to a grammar

  E → a | b | c | d | E+E | E-E | E*E | (E)

 a a*c c*(b+d)
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Parse Trees for Expressions

A parse tree shows the structure of an expression as it 

corresponds to a grammar

  E → a | b | c | d | E+E | E-E | E*E | (E)

 a a*c c*(b+d)
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A parse tree and an AST are not the same thing

• The latter is a data structure produced by parsing 

Abstract Syntax Trees 

42

a*c c*(b+d)

*

a c

Mult(A,C)

*

c +

b d

Mult(C,Plus(B,D))

Parse trees

ASTs
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We will show how 

to parse to an AST 

in the next lecture



Practice

E → a | b | c | d | E+E | E-E | E*E | (E)

Make a parse tree for…

• a*b

• a+(b-c)

• d*(d+b)-a

• (a+b)*(c-d)

• a+(b-c)*d
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Leftmost and Rightmost Derivation

Leftmost derivation 

• Leftmost nonterminal is replaced in each step

Rightmost derivation 

• Rightmost nonterminal is replaced in each step

Example

• Grammar

➢ S → AB, A → a, B → b

• Leftmost derivation for “ab”
➢ S ⇒ AB ⇒ aB ⇒ ab

• Rightmost derivation for “ab”
➢ S ⇒ AB ⇒ Ab ⇒ ab
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Parse Tree For Derivations

Parse tree may be same for both leftmost & rightmost 

derivations

• Example Grammar: S → a | SbS  String: aba

Leftmost Derivation  

 S ⇒ SbS ⇒ abS ⇒ aba

Rightmost Derivation 

 S ⇒ SbS ⇒ Sba ⇒ aba

• Parse trees don’t show order productions are applied

• Every parse tree has a unique leftmost and a unique 

rightmost derivation
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Parse Tree For Derivations (cont.)

Not every string has a unique parse tree

• Example Grammar: S → a | SbS  String: ababa

Leftmost Derivation

 S ⇒ SbS ⇒ abS ⇒ abSbS ⇒ ababS ⇒ ababa

Another Leftmost Derivation 

 S ⇒ SbS ⇒ SbSbS ⇒ abSbS ⇒ ababS ⇒ ababa
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Ambiguity

A grammar is ambiguous if a string may have multiple 

leftmost derivations
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I saw a girl with a 

telescope.



Ambiguity

A grammar is ambiguous if a string may have multiple 

leftmost derivations

• Equivalent to multiple parse trees

• Can be hard to determine

1. S → aS | T 

 T → bT | U 

 U → cU | ε

2. S → T | T 

 T → Tx | Tx | x | x

3. S → SS | () | (S)

No

Yes

?
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Ambiguity (cont.)

Example 

• Grammar: S → SS | () | (S) String: ()()()

• 2 distinct (leftmost) derivations (and parse trees)

➢S  SS  SSS ()SS ()()S ()()()

➢S  SS  ()S ()SS ()()S ()()()
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CFGs for Programming Languages

Recall that our goal is to describe programming languages 

with CFGs

We had the following example which describes limited 

arithmetic expressions

E → a | b | c | E+E | E-E | E*E | (E)

What’s wrong with using this grammar?

• It’s ambiguous!
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Example:  a-b-c

E ⇒ E-E ⇒ a-E ⇒ a-E-E ⇒ 

a-b-E ⇒ a-b-c

E ⇒ E-E ⇒ E-E-E ⇒

 a-E-E ⇒ a-b-E ⇒ a-b-c

Corresponds to a-(b-c) Corresponds to (a-b)-c
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Example:  a-b*c

E ⇒ E-E ⇒ a-E ⇒ a-E*E ⇒ 

a-b*E ⇒ a-b*c

E ⇒ E-E ⇒ E-E*E ⇒

 a-E*E ⇒ a-b*E ⇒ a-b*c

Corresponds to a-(b*c) Corresponds to (a-b)*c

*

*
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Another Example:  If-Then-Else

<stmt> → <assignment> | <if-stmt> | ...

 <if-stmt> → if (<expr>) <stmt> |

                     if (<expr>) <stmt> else <stmt>

 (Recall < >’s are used to denote nonterminals)

Consider the following program fragment
 if (x > y)

   if (x < z)

     a = 1;

   else a = 2;

 (Note:  Ignore newlines)

53

Aka the dangling else problem
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Two Parse Trees

54

if (x > y)
   if (x < z)
     a = 1;
   else a = 2;
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Quiz #5

Which of the following grammars is ambiguous?

 A.   S → 0SS1 | 0S1 | ε

 B.   S → A1S1A | ε   

       A → 0

 C.   S → (S, S, S) | 1

 D.   None of the above.
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Dealing With Ambiguous Grammars

Ambiguity is bad

• Syntax is correct

• But semantics differ depending on choice

➢ Different associativity  (a-b)-c vs. a-(b-c)

➢ Different precedence  (a-b)*c vs. a-(b*c)

➢ Different control flow  if (if else) vs. if (if) else

Two approaches

• Rewrite grammar

➢ Grammars are not unique – can have multiple grammars for the same 

language. But result in different parses.

• Use special parsing rules

➢ Depending on parsing tool
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Fixing the Expression Grammar

Require right operand to not be bare expression

 E → E+T | E-T | E*T | T

 T → a | b | c | (E)

Corresponds to left associativity

Now only one parse tree for a-b-c

• Find derivation
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What if we want Right Associativity?

Left-recursive productions

• Used for left-associative operators

• Example

 E → E+T | E-T | E*T | T

 T → a | b | c | (E)

Right-recursive productions

• Used for right-associative operators

• Example

 E → T+E | T-E | T*E | T

 T → a | b | c | (E)
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A Different Problem

How about the string a+b*c ?

E → E+T | E-T | E*T | T

T → a | b | c | (E)

Doesn’t have correct

    precedence for *

• When a nonterminal has productions for several operators, 

they effectively have the same precedence

Solution – Introduce new nonterminals
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Final Expression Grammar

E → E+T | E-T | T lowest precedence operators

T → T*P | P  higher precedence

P → a | b | c | (E) highest precedence (parentheses)

63CMSC330 Fall 2025

Derivation of a+b*c:

E → E+T→T+T→P+T→a+T→a+T*P→a+P*P→a+b*P→a+b*c



Fixing the Expression Grammar

64

Controlling precedence of operators

• Introduce new nonterminals

• Precedence increases closer to operands

Controlling associativity of operators

• Introduce new nonterminals

• Assign associativity based on production form

➢ E → E+T (left associative) vs. E → T+E (right associative)

➢ But parsing method might limit form of rules
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Conclusion

Context Free Grammars (CFGs) can describe 

programming language syntax

• They are a kind of formal language that is more powerful than 

regular expressions

CFGs can also be used as the basis for programming 

language parsers (details later)

• But the grammar should not be ambiguous

➢ May need to change more natural grammar to make it so

• Parsing often aims to produce abstract syntax trees

➢ Data structure that records the key elements of program
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