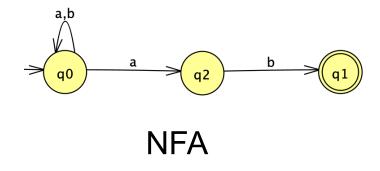
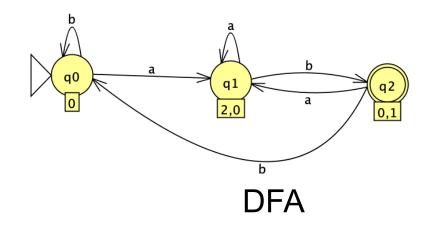

CMSC 330: Organization of Programming Languages


Reducing NFA to DFA and DFAs Minimization

Reducing NFA to DFA



Why NFA → DFA

DFA is generally more efficient than NFA

Language: (a|b)*ab

How to accept bab?

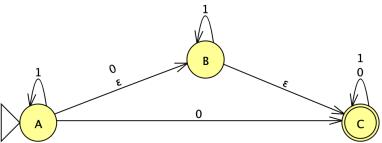
Why NFA → DFA

- DFA has the same expressive power as NFAs.
 - Let language L ⊆ Σ*, and suppose L is accepted by NFA N = (Σ, Q, q₀, F, δ). There exists a DFA D= (Σ, Q', q'₀, F', δ') that also accepts L. (L(N) = L(D))
- NFAs are more flexible and easier to build. But it is not more powerful than DFAs

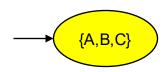
NFA ↔ DFA

How to Convert NFA to DFA

Subset Construction Algorithm

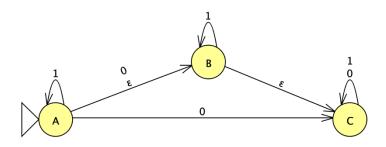

Input NFA (Σ , Q, q₀, F_n, δ)

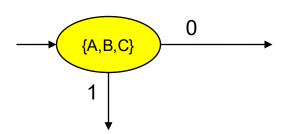
Output DFA (Σ , R, r₀, F_d, δ ')


Subset Construction Algorithm

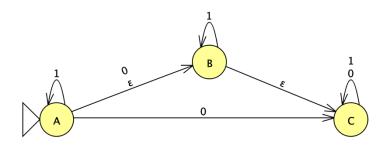
```
Output DFA (\Sigma, R, r<sub>0</sub>, F<sub>d</sub>, \delta')
Input NFA (\Sigma, Q, q<sub>0</sub>, F<sub>n</sub>, \delta)
                      Let r_0 = \varepsilon-closure(\delta, q_0), add it to R
                      While \exists an unmarked state r \in R
                             Mark r
                             For each \sigma \in \Sigma
                             Let E = move(\delta,r,\sigma)
                                   Let e = \varepsilon-closure(\delta,E)
                                   If e ∉ R
                                         Let R = R \cup \{e\}
                                   Let \delta' = \delta' \cup \{r, \sigma, e\}
                      Let F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}
```

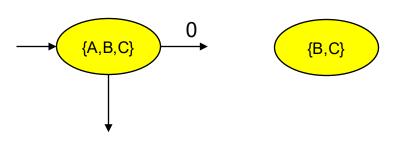
NFA


DFA



New Start State


Let r_0 = ε-closure(δ, q_0), add it to R


```
Mark r
For each \sigma \in \Sigma
Let E = move(\delta, r, \sigma)
Let e = \epsilon-closure(\delta, E)
If e \notin R
Let R = R \cup {e}
Let \delta' = \delta' \cup \{r, \sigma, e\}
Let F_d = \{r \mid \exists \ s \in r \ with \ s \in F_n\}
```

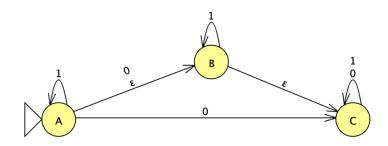

For each
$$\sigma \in \Sigma$$
 //0
Let E = move(δ, r, σ)
Let e = ϵ -closure(δ, E)
If e $\notin R$
Let R = R \cup {e}
Let $\delta' = \delta' \cup \{r, \sigma, e\}$
Let $F_d = \{r \mid \exists \ s \in r \ with \ s \in F_n\}$

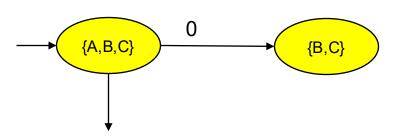
	0	1
{A,B,C}	{B,C}	

While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma$

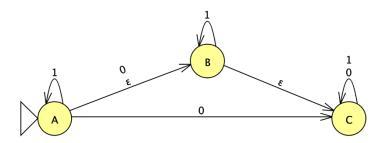

Let E = move(δ ,r, σ)

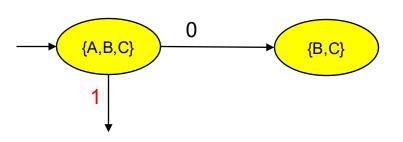

Let e = ε-closure(
$$\delta$$
,E)

If e ∉ R

Let $R = R \cup \{e\}$

Let $\delta' = \delta' \cup \{r, \sigma, e\}$





	0	1
{A,B,C}	{B,C}	
{B,C}		

While \exists an unmarked state $r \in R$

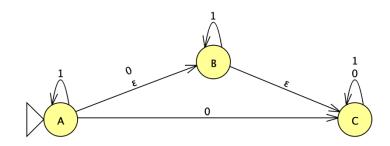
Mark r For each $\sigma \in \Sigma$ Let E = move(δ ,r, σ) Let $e = \varepsilon$ -closure(δ ,E) If e ∉ R Let $R = R \cup \{e\}$ \longrightarrow Let $\delta' = \delta' \cup \{r, \sigma, e\}$ Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$

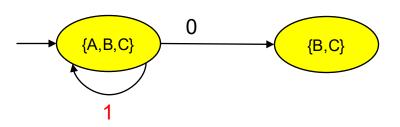
	0	1
{A,B,C}	{B,C}	
{B,C}		

Mark r

For each
$$\sigma \in \Sigma$$
 //1

Let E = move(δ, r, σ)


Let e = ϵ -closure(δ, E)


If e $\notin R$

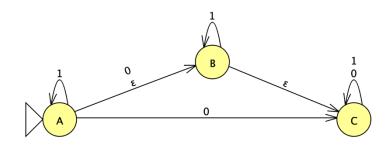
Let R = R \cup {e}

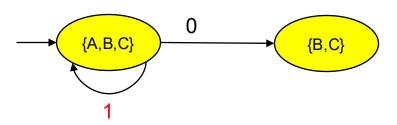
Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r \mid \exists \ s \in r \ with \ s \in F_n\}$

	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}		

For each
$$\sigma \in \Sigma$$
 //1


Let E = move(
$$\delta$$
,r, σ)


Let e = ε-closure(
$$\delta$$
,E)

Let
$$R = R \cup \{e\}$$

Let
$$\delta' = \delta' \cup \{r, \sigma, e\}$$

Let
$$F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$$

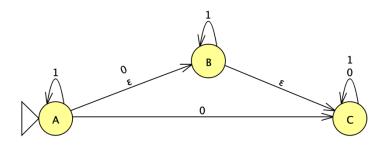
_	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}		

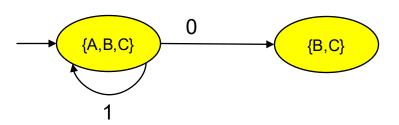
```
Let r_0 = \epsilon-closure(\delta, q_0), add it to R

While \exists an unmarked state r \in R

Mark r

For each \sigma \in \Sigma //1

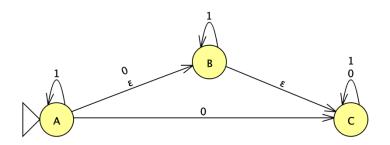

Let E = move(\delta, r, \sigma)

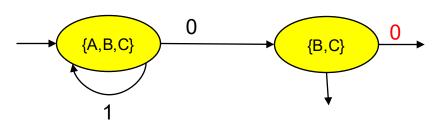

Let e = \epsilon-closure(\delta, E)

If e \notin R

Let R = R \cup \{e\}

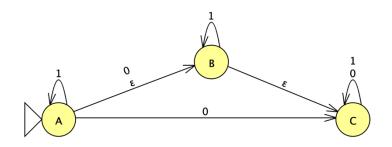
Let \delta' = \delta' \cup \{r, \sigma, e\}
```

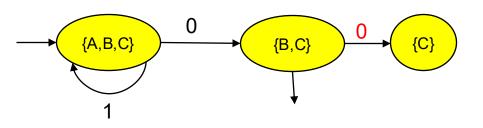




	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}		

While \exists an unmarked state $r \in R$ Mark rFor each $\sigma \in \Sigma$ //1

Let $E = move(\delta, r, \sigma)$ Let $e = \varepsilon$ -closure(δ, E)


If $e \notin R$ Let $R = R \cup \{e\}$ Let $\delta' = \delta' \cup \{r, \sigma, e\}$



	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}		

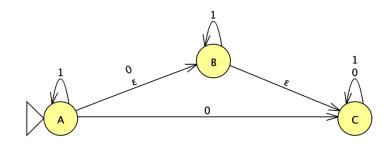
Mark r
For each
$$\sigma \in \Sigma$$
 //0
Let E = move(δ, r, σ)
Let e = ϵ -closure(δ, E)
If e $\notin R$
Let R = R \cup {e}
Let $\delta' = \delta' \cup \{r, \sigma, e\}$
Let $F_d = \{r \mid \exists \ s \in r \ with \ s \in F_n\}$

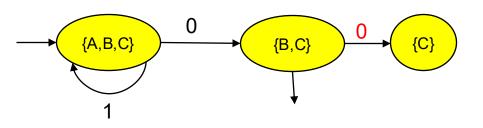
	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}	{C}	

While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma$ //0

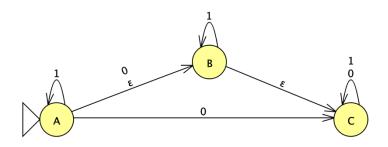

Let E = move(δ ,r, σ)


Let e = ε-closure(
$$\delta$$
,E)

If e ∉ R

Let $R = R \cup \{e\}$

Let $\delta' = \delta' \cup \{r, \sigma, e\}$



	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}	{C}	
{C}		

Let $r_0 = \epsilon$ -closure(δ, q_0), add it to R While \exists an unmarked state $r \in R$

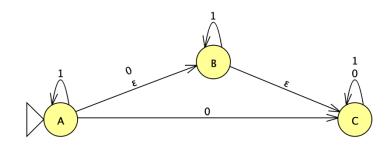
Mark r For each
$$\sigma \in \Sigma$$
 //0
Let E = move(δ, r, σ)
Let e = ϵ -closure(δ, E)
If e $\notin R$
Let R = R \cup {e}

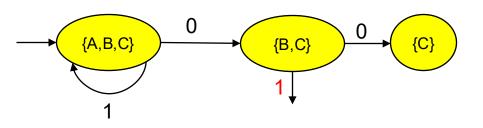
Let $\delta' = \delta' \cup \{r, \sigma, e\}$
Let $F_d = \{r \mid \exists \ s \in r \ with \ s \in F_n\}$

_	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}	{C}	?
{C}		

For each
$$\sigma \in \Sigma$$
 //1

Let E = move(δ, r, σ)


Let e = ϵ -closure(δ, E)


If e $\notin R$

Let R = R \cup {e}

Let $\delta' = \delta' \cup \{r, \sigma, e\}$

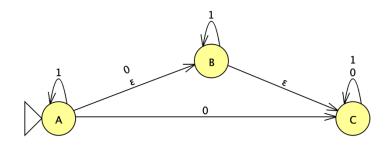
Let $F_d = \{r \mid \exists \ s \in r \ with \ s \in F_n\}$

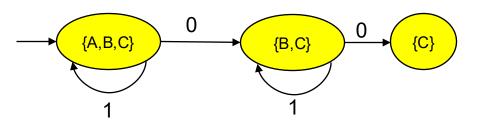
	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}	{C}	{B,C}
{C}		

While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma$ //


Let E = move(δ ,r, σ)

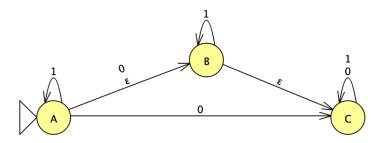

Let e = ε-closure(
$$\delta$$
,E)

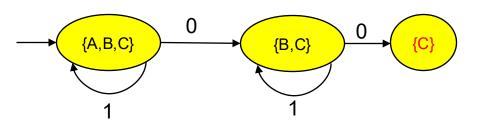
If e ∉ R

Let $R = R \cup \{e\}$

Let $\delta' = \delta' \cup \{r, \sigma, e\}$

	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}	{C}	{B,C}
{C}		

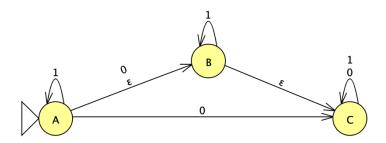

While \exists an unmarked state $r \in R$ Mark rFor each $\sigma \in \Sigma$ //1

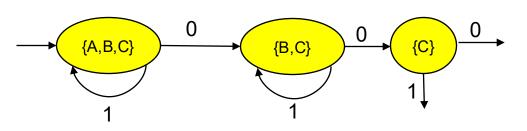

Let $E = move(\delta, r, \sigma)$

Let $e = \varepsilon$ -closure(δ ,E) If $e \notin R$

Let $R = R \cup \{e\}$

Let δ ' = δ ' ∪ {r, σ, e}



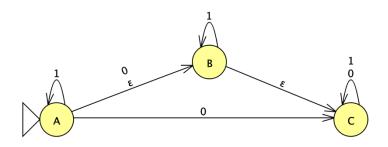


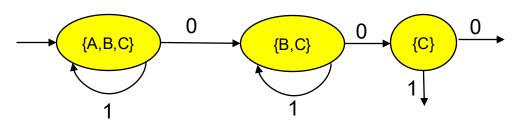
	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}	{C}	{B,C}
{C}		

While \exists an unmarked state $r \in R$

Mark r
For each
$$\sigma \in \Sigma$$
 //1
Let E = move(δ ,r, σ)
Let e = ϵ -closure(δ ,E)
If e \notin R
Let R = R \cup {e}
Let δ ' = δ ' \cup {r, σ , e}

$$\longrightarrow$$
 For each $\sigma \in \Sigma$


Let E = move(
$$\delta$$
,r, σ)


Let
$$e = \varepsilon$$
-closure(δ ,E)

Let
$$R = R \cup \{e\}$$

Let
$$\delta' = \delta' \cup \{r, \sigma, e\}$$

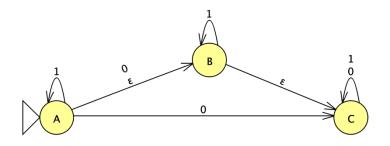
Let
$$F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$$

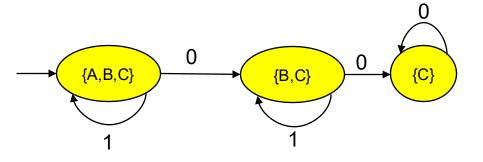
	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}	{C}	{B,C}
{C}	{C}	

While \exists an unmarked state $r \in R$

Mark r

For each $\sigma \in \Sigma$ //0

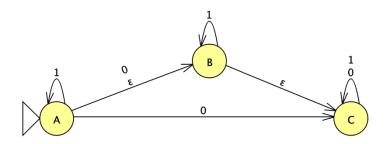

Let E = move(δ ,r, σ)

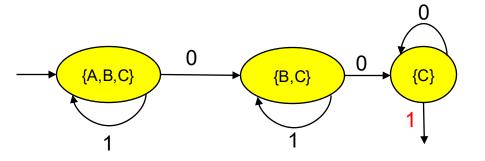

Let e = ε-closure(
$$\delta$$
,E)

If e ∉ R

Let $R = R \cup \{e\}$

Let $\delta' = \delta' \cup \{r, \sigma, e\}$





	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}	{C}	{B,C}
{C}	{C}	

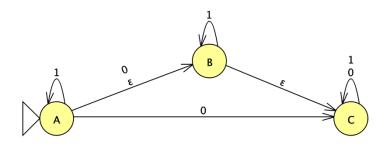
Let $r_0 = \epsilon$ -closure(δ, q_0), add it to R While \exists an unmarked state $r \in R$ Mark rFor each $\sigma \in \Sigma$ //0 Let E = move(δ, r, σ)

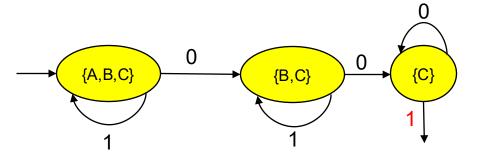
Let E = move(
$$\delta$$
,r, σ)
Let e = ϵ -closure(δ ,E)
If e \notin R
Let R = R \cup {e}
Let δ ' = δ ' \cup {r, σ , e}

	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}	{C}	{B,C}
{C}	{C}	

For each
$$\sigma \in \Sigma$$
 //1

Let E = move(δ, r, σ)


Let e = ϵ -closure(δ, E)


If e $\notin R$

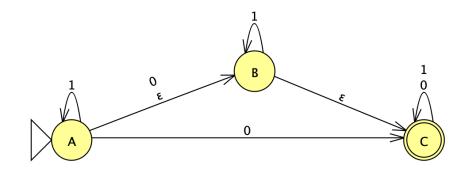
Let R = R \cup {e}

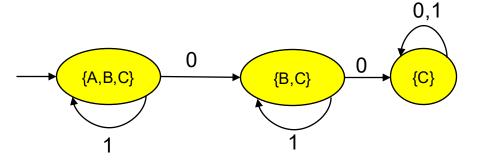
Let $\delta' = \delta' \cup \{r, \sigma, e\}$

Let $F_d = \{r \mid \exists \ s \in r \ with \ s \in F_n\}$

	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}	{C}	{B,C}
{C}	{C}	{C}

For each
$$\sigma \in \Sigma$$
 //1

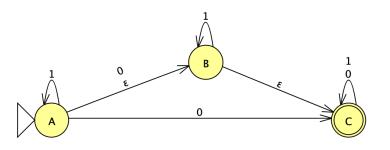

Let E = move(
$$\delta$$
,r, σ)

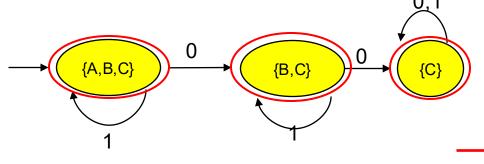

Let e = ε-closure(
$$\delta$$
,E)

Let
$$R = R \cup \{e\}$$

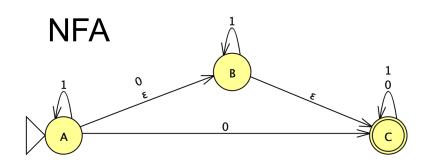
Let
$$\delta' = \delta' \cup \{r, \sigma, e\}$$

Let
$$F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$$

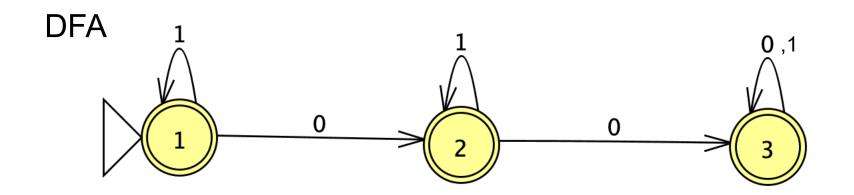


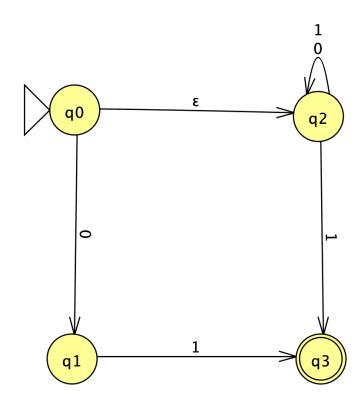

	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}	{C}	{B,C}
{C}	{C}	{C}

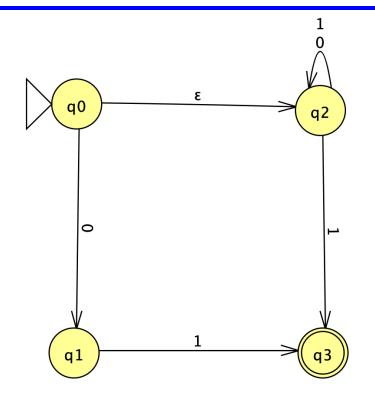
Mark r
For each
$$\sigma \in \Sigma$$
 //1
Let E = move(δ ,r, σ)
Let e = ϵ -closure(δ ,E)
If e \notin R
Let R = R \cup {e}

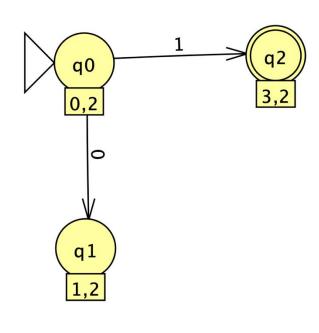

Let δ ' = δ ' \cup {r, σ , e}

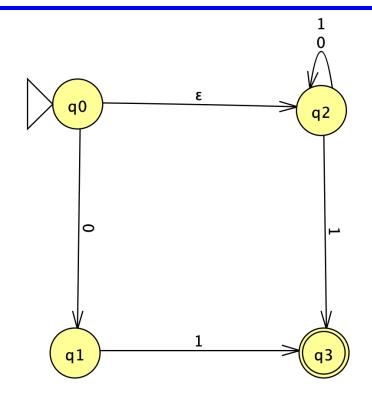
Let
$$F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$$

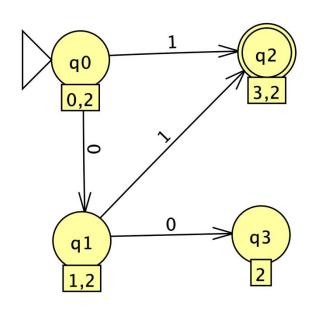


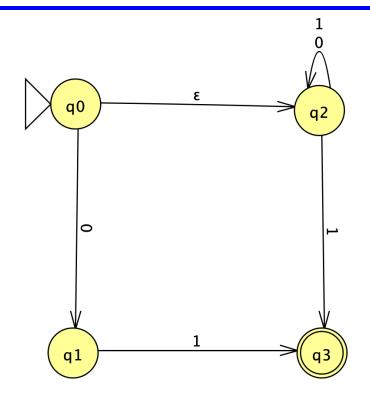


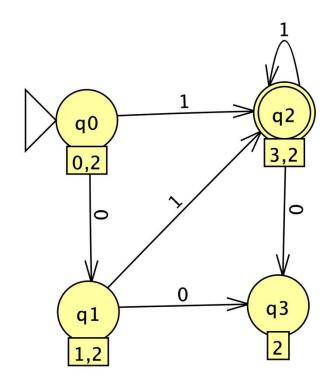

	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}	{C}	{B,C}
{C}	{C}	{C}

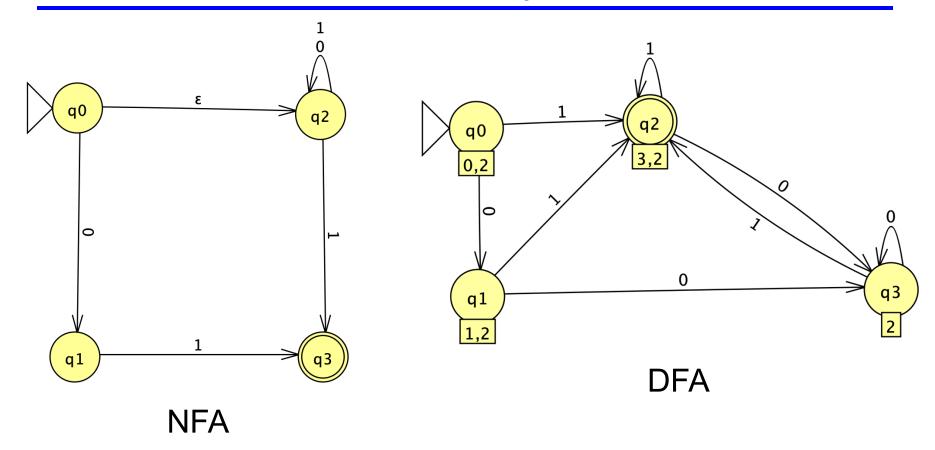


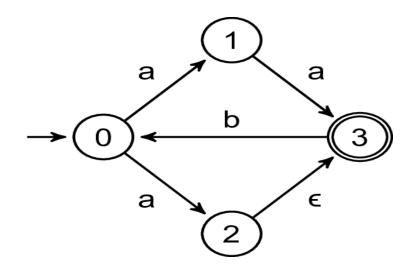

	0	1
{A,B,C}	{B,C}	{A,B,C}
{B,C}	{C}	{B,C}
{C}	{C}	{C}

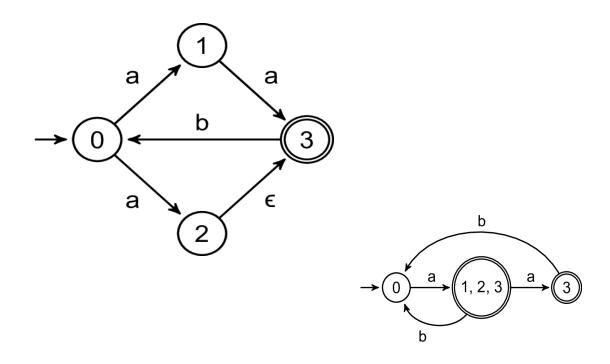




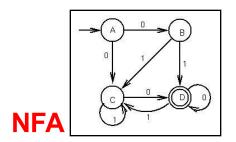


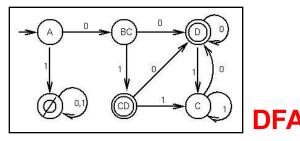






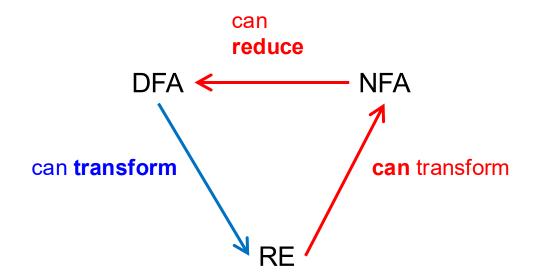
NFA → DFA Practice




NFA → DFA Practice

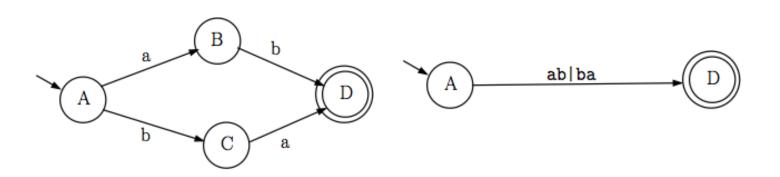
Analyzing the Reduction

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states.
 - Given NFA with n states, DFA may have 2ⁿ states
 - > Since a set with n items may have 2ⁿ subsets
 - Corollary
 - Reducing a NFA with n states may be O(2ⁿ)

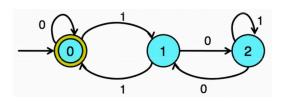


Recap: Matching a Regexp R

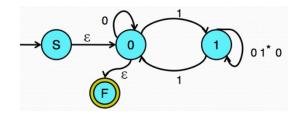
- ▶ Given R, construct NFA. Takes time O(R)
- ▶ Convert NFA to DFA. Takes time $O(2^{|R|})$
 - But usually not the worst case in practice
- Use DFA to accept/reject string s
 - Assume we can compute $\delta(q,\sigma)$ in constant time
 - Then time to process s is O(|s|)
 - Can't get much faster!
- Constructing the DFA is a one-time cost
 - But then processing strings is fast

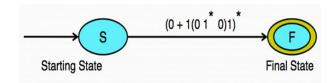

Closing the Loop: Reducing DFA to RE

Reducing DFAs to REs

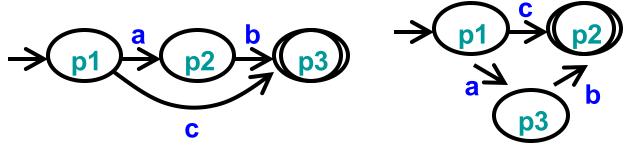

General idea

- Remove states one by one, labeling transitions with regular expressions
- When two states are left (start and final), the transition label is the regular expression for the DFA




DFA to RE example

Language over $\Sigma = \{0,1\}$ such that every string is a multiple of 3 in binary



Minimizing DFAs

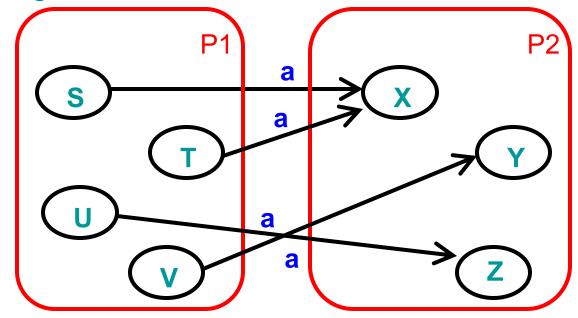
- Every regular language is recognizable by a unique minimum-state DFA
 - Ignoring the particular names of states
- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language

43

CMSC330 Fall 2025

Minimizing DFA: Hopcroft Reduction

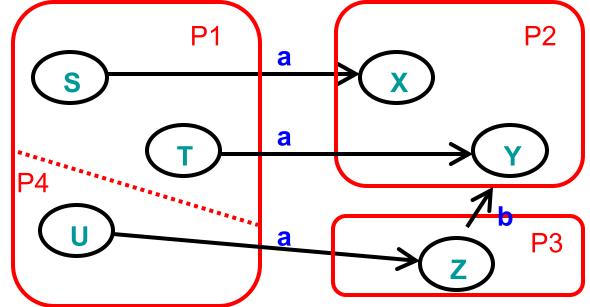
Intuition


- Look to distinguish states from each other
 - > End up in different accept / non-accept state with identical input

Algorithm

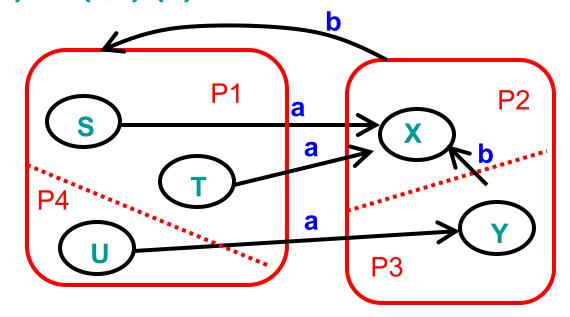
- Construct initial partition
 - Accepting & non-accepting states
- Iteratively split partitions (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states x, y belong in same partition if and only if for all symbols in Σ they transition to the same partition
- Update transitions & remove dead states

Splitting Partitions

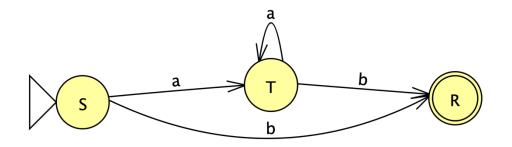

- No need to split partition {S,T,U,V}
 - All transitions on a lead to identical partition P2
 - Even though transitions on a lead to different states

CMSC330 Fall 2025 45

Splitting Partitions (cont.)

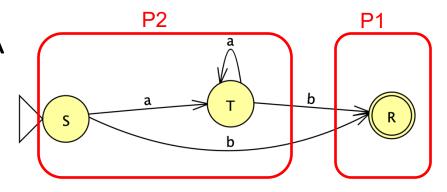

- Need to split partition {S,T,U} into {S,T}, {U}
 - Transitions on a from S,T lead to partition P2
 - Transition on a from U lead to partition P3

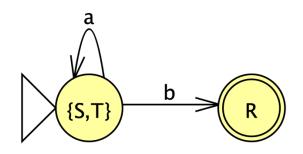
CMSC330 Fall 2025 46


Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition {S,T,U}
 - After splitting partition {X,Y} into {X}, {Y} we need to split partition {S,T,U} into {S,T}, {U}

CMSC330 Fall 2025


DFA



Initial partitions

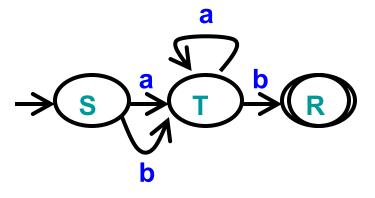
Split partition

DFA

- Initial partitions
 - Accept

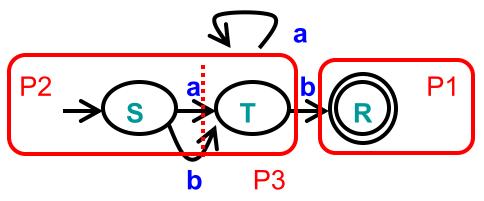
$$\{R\} = P1$$

Reject


$$\{S,T\}=P2$$

Split partition?

- → Not required, minimization done
- $move(S,a) = T \in P2$


$$- \text{move}(S,b) = R \in P1$$

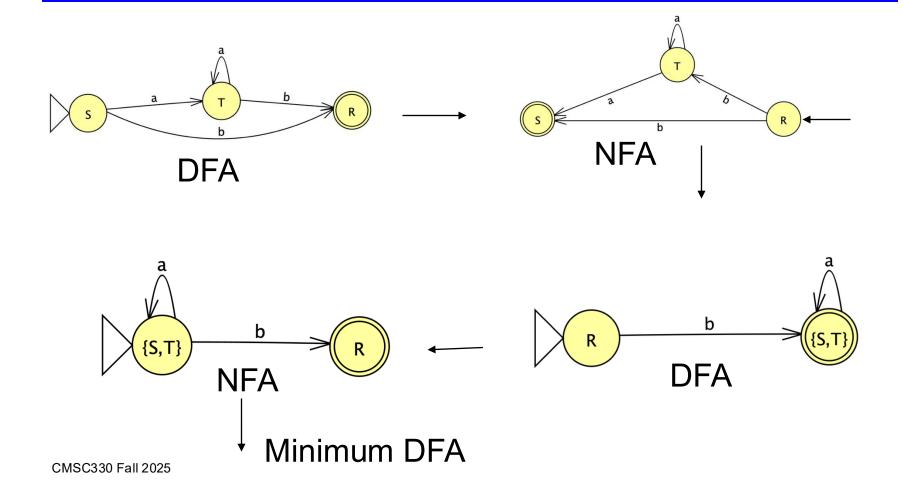
- $move(T,a) = T \in P2$ $move(T,b) = R \in P1$

CMSC330 Fall 2025 50

DFA

- Initial partitions
 - Accept { R }= P1
 - Reject { S, T } = P2
- ▶ Split partition? → Yes, different partitions for B
 - $move(S,a) = T \in P2$ $move(S,b) = T \in P2$
 - $move(T,a) = T \in P2$ $-move(T,b) = R \in P1$

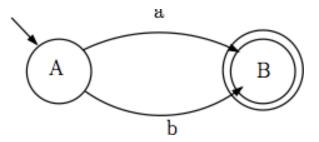
DFA


already

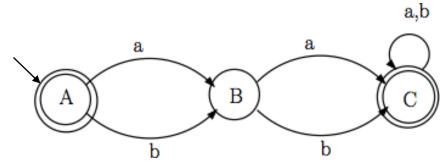
minimal

Brzozowski's algorithm

- Given a DFA, reverse all the edges, make the initial state an accept state, and the accept states initial, to get an NFA
- 2. NFA-> DFA
- 3. For the new DFA, reverse the edges (and initial-accept swap) get an NFA
- 4. NFA -> DFA


Brzozowski's algorithm

Complement of DFA


- Given a DFA accepting language L
 - How can we create a DFA accepting its complement?
 - Example DFA

$$> \Sigma = \{a,b\}$$

Complement of DFA

- Algorithm
 - Add explicit transitions to a dead state
 - Change every accepting state to a non-accepting state & every non-accepting state to an accepting state
- Note this only works with DFAs
 - Why not with NFAs?

Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA
- Equivalence of RE, NFA, DFA
 - RE → NFA
 - > Concatenation, union, closure
 - NFA → DFA
 - > ε-closure & subset algorithm
- DFA
 - Minimization, complementation