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Reducing NFA to DFA

DFA NFA

RE
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Why NFA → DFA

DFA is generally more efficient than NFA

Language: (a|b)*ab

How to accept bab? 

NFA

DFA
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Why NFA → DFA

DFA has the same expressive power as NFAs.

• Let language L ⊆ Σ*, and suppose L is accepted by NFA N = (Σ, 

Q, q0, F, δ). There exists a DFA D= (Σ, Q’, q’0, F’, δ’) that also 

accepts L. (L(N) = L(D))

NFAs are more flexible and easier to build. But it is not 

more powerful than DFAs

           NFA   DFA
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How to Convert NFA to DFA

Subset Construction Algorithm

Input NFA (Σ, Q, q0, Fn, δ)

Output DFA (Σ, R, r0, Fd, ’)
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Subset Construction Algorithm

Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r     

For each σ      

Let E = move(δ,r,σ)   

Let e = -closure(δ,E)  

If e  R    

Let R = R  {e}   

Let ’ = ’  {r, σ, e}   

Let Fd = {r |  s  r with s  Fn}   

Input NFA (Σ, Q, q0, Fn, δ)       Output DFA (Σ, R, r0, Fd, ’)
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Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r 

For each σ   

Let E = move(δ,r,σ) 

Let e = -closure(δ,E)

If e  R 

    Let R = R  {e} 

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn} 
{A,B,C}

DFA

New Start State

NFA
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0

1

CMSC330 Fall 2025



Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r 

For each σ   

Let E = move(δ,r,σ) 

Let e = -closure(δ,E)

If e  R 

    Let R = R  {e} 

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn} 

{A,B,C}

0 1

{A,B,C} {B,C}

0
{B,C}

CMSC330 Fall 2025



Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r 

For each σ   

Let E = move(δ,r,σ) 

Let e = -closure(δ,E)

If e  R 

    Let R = R  {e} 

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn} 

{A,B,C}

0 1

{A,B,C} {B,C}

{B,C}

0
{B,C}

CMSC330 Fall 2025



Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r 

For each σ   //1

Let E = move(δ,r,σ) 

Let e = -closure(δ,E)

If e  R 

    Let R = R  {e} 

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn} 

{A,B,C}

0 1

{A,B,C} {B,C}

{B,C}

0
{B,C}

1

CMSC330 Fall 2025



Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r 

For each σ   //1

Let E = move(δ,r,σ) 

Let e = -closure(δ,E)

If e  R 

    Let R = R  {e} 

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn} 

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C}

0
{B,C}

1

CMSC330 Fall 2025



Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r 

For each σ   //1

Let E = move(δ,r,σ) 

Let e = -closure(δ,E)

If e  R 

    Let R = R  {e} 

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn} 

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C}

0
{B,C}

1

CMSC330 Fall 2025



Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r 

For each σ   //1

Let E = move(δ,r,σ) 

Let e = -closure(δ,E)

If e  R 

    Let R = R  {e} 

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn} 

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C}

0
{B,C}

1

CMSC330 Fall 2025



Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r 

For each σ   //0

Let E = move(δ,r,σ) 

Let e = -closure(δ,E)

If e  R 

    Let R = R  {e} 

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn} 

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C}

0
{B,C}

1

0

CMSC330 Fall 2025



Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r 

For each σ   //0

Let E = move(δ,r,σ) 

Let e = -closure(δ,E)

If e  R 

    Let R = R  {e} 

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn} 

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C} {C}

0
{B,C}

1

0
{C}

CMSC330 Fall 2025



Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r 

For each σ   //0

Let E = move(δ,r,σ) 

Let e = -closure(δ,E)

If e  R 

      Let R = R  {e} 

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn} 

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C} {C}

{C}

0
{B,C}

1

0
{C}

CMSC330 Fall 2025



Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r 

For each σ   //1

Let E = move(δ,r,σ) 

Let e = -closure(δ,E)

If e  R 

    Let R = R  {e} 

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn} 

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C} {C} ?

{C}

0
{B,C}

1

0
{C}

1

CMSC330 Fall 2025



Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r 

For each σ   //1

Let E = move(δ,r,σ) 

Let e = -closure(δ,E)

If e  R 

    Let R = R  {e} 

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn} 

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C} {C} {B,C}

{C}

0
{B,C}

1

0
{C}

1

CMSC330 Fall 2025



Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r 

For each σ   //1

Let E = move(δ,r,σ) 

Let e = -closure(δ,E)

If e  R 

    Let R = R  {e} 

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn} 

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C} {C} {B,C}

{C}

0
{B,C}

1

0
{C}

1

CMSC330 Fall 2025



Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r 

For each σ   //1

Let E = move(δ,r,σ) 

Let e = -closure(δ,E)

If e  R 

   Let R = R  {e} 

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn} 

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C} {C} {B,C}

{C}

0
{B,C}

1

0
{C}

1

CMSC330 Fall 2025



Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r 

For each σ   

Let E = move(δ,r,σ) 

Let e = -closure(δ,E)

If e  R 

    Let R = R  {e} 

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn} 

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C} {C} {B,C}

{C}

0
{B,C}

1

0
{C}

1

0

1

CMSC330 Fall 2025



Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r 

For each σ   //0

Let E = move(δ,r,σ) 

Let e = -closure(δ,E)

If e  R 

    Let R = R  {e} 

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn} 

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C} {C} {B,C}

{C} {C}

0
{B,C}

1

0
{C}

1

0

1

CMSC330 Fall 2025



Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r 

For each σ   //0

Let E = move(δ,r,σ) 

Let e = -closure(δ,E)

If e  R 

   Let R = R  {e} 

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn} 

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C} {C} {B,C}

{C} {C}

0
{B,C}

1

0
{C}

1

0

CMSC330 Fall 2025



Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r 

For each σ   //1

Let E = move(δ,r,σ) 

Let e = -closure(δ,E)

If e  R 

  Let R = R  {e} 

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn} 

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C} {C} {B,C}

{C} {C}

0
{B,C}

1

0
{C}

1

0

1

CMSC330 Fall 2025



Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r 

For each σ   //1

Let E = move(δ,r,σ) 

Let e = -closure(δ,E)

If e  R 

     Let R = R  {e} 

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn} 

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C} {C} {B,C}

{C} {C} {C}

0
{B,C}

1

0
{C}

1

0

1

CMSC330 Fall 2025



Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r 

For each σ   //1

Let E = move(δ,r,σ) 

Let e = -closure(δ,E)

If e  R 

   Let R = R  {e} 

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn} 

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C} {C} {B,C}

{C} {C} {C}

0
{B,C}

1

0
{C}

1

0,1

CMSC330 Fall 2025



Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r 

For each σ   //1

Let E = move(δ,r,σ) 

Let e = -closure(δ,E)

If e  R 

   Let R = R  {e} 

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn} 

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C} {C} {B,C}

{C} {C} {C}

0
{B,C}

1

0
{C}

1

0,1

CMSC330 Fall 2025



0 1

{A,B,C} {B,C} {A,B,C}

{B,C} {C} {B,C}

{C} {C} {C}

NFA

DFA
,1
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NFA → DFA Another Example
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NFA → DFA Another Example
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NFA → DFA Another Example

NFA

DFA

CMSC330 Fall 2025



NFA → DFA Practice
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NFA → DFA Practice

CMSC330 Fall 2025



37

Analyzing the Reduction

Can reduce any NFA to a DFA using subset alg.

How many states in the DFA?

• Each DFA state is a subset of the set of NFA states

• Given NFA with n states, DFA may have 2n states

➢ Since a set with n items may have 2n subsets

• Corollary

➢ Reducing a NFA with n states may be O(2n)

NFA DFA
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Recap: Matching a Regexp R

Given R, construct NFA. Takes time O(R)

Convert NFA to DFA. Takes time O(2|R|)

• But usually not the worst case in practice

Use DFA to accept/reject string s

• Assume we can compute (q,σ) in constant time

• Then time to process s is O(|s|)

➢ Can’t get much faster!

Constructing the DFA is a one-time cost

• But then processing strings is fast
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Closing the Loop: Reducing DFA to RE

DFA NFA

RE

can transform

can

reduce

can transform
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Reducing DFAs to REs

General idea

• Remove states one by one, labeling transitions with regular 

expressions

• When two states are left (start and final), the transition label is 

the regular expression for the DFA
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DFA to RE example

Language over   = {0,1} such that every string is a multiple of 3 in binaryΣ
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Minimizing DFAs

Every regular language is recognizable by a unique 

minimum-state DFA

• Ignoring the particular names of states

In other words

• For every DFA, there is a unique DFA with minimum number 

of states that accepts the same language

b
p1 p2 p3

a

b

p1 p2

p3

c

c

a
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Minimizing DFA: Hopcroft Reduction

Intuition

• Look to distinguish states from each other

➢ End up in different accept / non-accept state with identical input

Algorithm

• Construct initial partition 

➢ Accepting & non-accepting states

• Iteratively split partitions (until partitions remain fixed)

➢ Split a partition if members in partition have transitions to different 

partitions for same input

• Two states x, y belong in same partition if and only if for all symbols in Σ 

they transition to the same partition

• Update transitions & remove dead states

J. Hopcroft, “An n log n algorithm for minimizing states in a finite automaton,” 1971 
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Splitting Partitions

No need to split partition {S,T,U,V}

• All transitions on a lead to identical partition P2

• Even though transitions on a lead to different states

S
a

P2

U

T

X

Z

Y

P1

a

a

V
a
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Splitting Partitions (cont.)

Need to split partition {S,T,U} into {S,T}, {U}

• Transitions on a from S,T lead to partition P2

• Transition on a from U lead to partition P3

S
a

P2

U

T

X

Z

Y

P1

a

a P3

P4

b
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Resplitting Partitions

Need to reexamine partitions after splits 

• Initially no need to split partition {S,T,U}

• After splitting partition {X,Y} into {X}, {Y} we need to split partition 

{S,T,U} into {S,T}, {U}

S
a

P2

U

T

X

Y

P1
a

a
P4

P3

b

b
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Minimizing DFA: Example 1

DFA

Initial partitions

Split partition
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Minimizing DFA: Example 1

DFA

Initial partitions

• Accept

• Reject

Split partition?

• move(S,a)   – move(S,b)

• move(T,a)   – move (T,b)

{ R } = P1

{ S, T } = P2

= T ∈ P2

→ Not required, minimization done

= T ∈ P2

= R ∈ P1

= R ∈ P1

P1P2
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Minimizing DFA: Example 2

b
S T R

a

b

a
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Minimizing DFA: Example 2

DFA

Initial partitions

• Accept

• Reject

Split partition?

• move(S,a)   – move(S,b)

• move(T,a)   – move (T,b)

b
S T R

a

b

a

{ R }= P1

{ S, T } = P2

= T ∈ P2

P1P2

→ Yes, different partitions for B

= T ∈ P2

= T ∈ P2

= R ∈ P1

P3
DFA 

already 

minimal

CMSC330 Fall 2025



Brzozowski's algorithm

1. Given a DFA, reverse all the edges, make the initial state 

an accept state, and the accept states initial, to get an 

NFA

2. NFA-> DFA

3. For the new DFA, reverse the edges (and initial-accept 

swap) get an NFA

4. NFA -> DFA
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Brzozowski's algorithm

DFA
NFA

DFANFA

Minimum DFA
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Complement of DFA

Given a DFA accepting language L

• How can we create a DFA accepting its complement?

• Example DFA

➢ Σ = {a,b}
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Complement of DFA

Algorithm

• Add explicit transitions to a dead state

• Change every accepting state to a non-accepting state & every non-

accepting state to an accepting state

Note this only works with DFAs

• Why not with NFAs?
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Summary of Regular Expression Theory

Finite automata

• DFA, NFA

Equivalence of RE, NFA, DFA

• RE → NFA

➢ Concatenation, union, closure

• NFA → DFA 

➢ -closure & subset algorithm

DFA

• Minimization, complementation
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