
CMSC 330: Organization of Programming

Languages

Reducing NFA to DFA and

DFAs Minimization

CMSC330 Fall 2025

Reducing NFA to DFA

DFA NFA

RE

CMSC330 Fall 2025

Why NFA → DFA

DFA is generally more efficient than NFA

Language: (a|b)*ab

How to accept bab?

NFA

DFA

CMSC330 Fall 2025

Why NFA → DFA

DFA has the same expressive power as NFAs.

• Let language L ⊆ Σ*, and suppose L is accepted by NFA N = (Σ,

Q, q0, F, δ). There exists a DFA D= (Σ, Q’, q’0, F’, δ’) that also

accepts L. (L(N) = L(D))

NFAs are more flexible and easier to build. But it is not

more powerful than DFAs

 NFA DFA
CMSC330 Fall 2025

How to Convert NFA to DFA

Subset Construction Algorithm

Input NFA (Σ, Q, q0, Fn, δ)

Output DFA (Σ, R, r0, Fd, ’)

CMSC330 Fall 2025

Subset Construction Algorithm

Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r

For each σ  

Let E = move(δ,r,σ)

Let e = -closure(δ,E)

If e  R

Let R = R  {e}

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn}

Input NFA (Σ, Q, q0, Fn, δ) Output DFA (Σ, R, r0, Fd, ’)

CMSC330 Fall 2025

Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r

For each σ  

Let E = move(δ,r,σ)

Let e = -closure(δ,E)

If e  R

 Let R = R  {e}

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn}
{A,B,C}

DFA

New Start State

NFA

CMSC330 Fall 2025

Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r

For each σ   //0

Let E = move(δ,r,σ)

Let e = -closure(δ,E)

If e  R

 Let R = R  {e}

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn}

{A,B,C}

0 1

{A,B,C}

0

1

CMSC330 Fall 2025

Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r

For each σ  

Let E = move(δ,r,σ)

Let e = -closure(δ,E)

If e  R

 Let R = R  {e}

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn}

{A,B,C}

0 1

{A,B,C} {B,C}

0
{B,C}

CMSC330 Fall 2025

Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r

For each σ  

Let E = move(δ,r,σ)

Let e = -closure(δ,E)

If e  R

 Let R = R  {e}

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn}

{A,B,C}

0 1

{A,B,C} {B,C}

{B,C}

0
{B,C}

CMSC330 Fall 2025

Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r

For each σ   //1

Let E = move(δ,r,σ)

Let e = -closure(δ,E)

If e  R

 Let R = R  {e}

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn}

{A,B,C}

0 1

{A,B,C} {B,C}

{B,C}

0
{B,C}

1

CMSC330 Fall 2025

Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r

For each σ   //1

Let E = move(δ,r,σ)

Let e = -closure(δ,E)

If e  R

 Let R = R  {e}

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn}

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C}

0
{B,C}

1

CMSC330 Fall 2025

Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r

For each σ   //1

Let E = move(δ,r,σ)

Let e = -closure(δ,E)

If e  R

 Let R = R  {e}

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn}

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C}

0
{B,C}

1

CMSC330 Fall 2025

Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r

For each σ   //1

Let E = move(δ,r,σ)

Let e = -closure(δ,E)

If e  R

 Let R = R  {e}

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn}

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C}

0
{B,C}

1

CMSC330 Fall 2025

Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r

For each σ   //0

Let E = move(δ,r,σ)

Let e = -closure(δ,E)

If e  R

 Let R = R  {e}

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn}

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C}

0
{B,C}

1

0

CMSC330 Fall 2025

Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r

For each σ   //0

Let E = move(δ,r,σ)

Let e = -closure(δ,E)

If e  R

 Let R = R  {e}

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn}

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C} {C}

0
{B,C}

1

0
{C}

CMSC330 Fall 2025

Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r

For each σ   //0

Let E = move(δ,r,σ)

Let e = -closure(δ,E)

If e  R

 Let R = R  {e}

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn}

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C} {C}

{C}

0
{B,C}

1

0
{C}

CMSC330 Fall 2025

Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r

For each σ   //1

Let E = move(δ,r,σ)

Let e = -closure(δ,E)

If e  R

 Let R = R  {e}

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn}

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C} {C} ?

{C}

0
{B,C}

1

0
{C}

1

CMSC330 Fall 2025

Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r

For each σ   //1

Let E = move(δ,r,σ)

Let e = -closure(δ,E)

If e  R

 Let R = R  {e}

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn}

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C} {C} {B,C}

{C}

0
{B,C}

1

0
{C}

1

CMSC330 Fall 2025

Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r

For each σ   //1

Let E = move(δ,r,σ)

Let e = -closure(δ,E)

If e  R

 Let R = R  {e}

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn}

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C} {C} {B,C}

{C}

0
{B,C}

1

0
{C}

1

CMSC330 Fall 2025

Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r

For each σ   //1

Let E = move(δ,r,σ)

Let e = -closure(δ,E)

If e  R

 Let R = R  {e}

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn}

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C} {C} {B,C}

{C}

0
{B,C}

1

0
{C}

1

CMSC330 Fall 2025

Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r

For each σ  

Let E = move(δ,r,σ)

Let e = -closure(δ,E)

If e  R

 Let R = R  {e}

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn}

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C} {C} {B,C}

{C}

0
{B,C}

1

0
{C}

1

0

1

CMSC330 Fall 2025

Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r

For each σ   //0

Let E = move(δ,r,σ)

Let e = -closure(δ,E)

If e  R

 Let R = R  {e}

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn}

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C} {C} {B,C}

{C} {C}

0
{B,C}

1

0
{C}

1

0

1

CMSC330 Fall 2025

Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r

For each σ   //0

Let E = move(δ,r,σ)

Let e = -closure(δ,E)

If e  R

 Let R = R  {e}

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn}

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C} {C} {B,C}

{C} {C}

0
{B,C}

1

0
{C}

1

0

CMSC330 Fall 2025

Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r

For each σ   //1

Let E = move(δ,r,σ)

Let e = -closure(δ,E)

If e  R

 Let R = R  {e}

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn}

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C} {C} {B,C}

{C} {C}

0
{B,C}

1

0
{C}

1

0

1

CMSC330 Fall 2025

Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r

For each σ   //1

Let E = move(δ,r,σ)

Let e = -closure(δ,E)

If e  R

 Let R = R  {e}

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn}

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C} {C} {B,C}

{C} {C} {C}

0
{B,C}

1

0
{C}

1

0

1

CMSC330 Fall 2025

Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r

For each σ   //1

Let E = move(δ,r,σ)

Let e = -closure(δ,E)

If e  R

 Let R = R  {e}

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn}

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C} {C} {B,C}

{C} {C} {C}

0
{B,C}

1

0
{C}

1

0,1

CMSC330 Fall 2025

Let r0 = -closure(δ,q0), add it to R

While  an unmarked state r  R

Mark r

For each σ   //1

Let E = move(δ,r,σ)

Let e = -closure(δ,E)

If e  R

 Let R = R  {e}

Let ’ = ’  {r, σ, e}

Let Fd = {r |  s  r with s  Fn}

{A,B,C}

0 1

{A,B,C} {B,C} {A,B,C}

{B,C} {C} {B,C}

{C} {C} {C}

0
{B,C}

1

0
{C}

1

0,1

CMSC330 Fall 2025

0 1

{A,B,C} {B,C} {A,B,C}

{B,C} {C} {B,C}

{C} {C} {C}

NFA

DFA
,1

CMSC330 Fall 2025

NFA → DFA Another Example

CMSC330 Fall 2025

NFA → DFA Another Example

CMSC330 Fall 2025

NFA → DFA Another Example

CMSC330 Fall 2025

NFA → DFA Another Example

CMSC330 Fall 2025

NFA → DFA Another Example

NFA

DFA

CMSC330 Fall 2025

NFA → DFA Practice

CMSC330 Fall 2025

NFA → DFA Practice

CMSC330 Fall 2025

37

Analyzing the Reduction

Can reduce any NFA to a DFA using subset alg.

How many states in the DFA?

• Each DFA state is a subset of the set of NFA states

• Given NFA with n states, DFA may have 2n states

➢ Since a set with n items may have 2n subsets

• Corollary

➢ Reducing a NFA with n states may be O(2n)

NFA DFA

CMSC330 Fall 2025

Recap: Matching a Regexp R

Given R, construct NFA. Takes time O(R)

Convert NFA to DFA. Takes time O(2|R|)

• But usually not the worst case in practice

Use DFA to accept/reject string s

• Assume we can compute (q,σ) in constant time

• Then time to process s is O(|s|)

➢ Can’t get much faster!

Constructing the DFA is a one-time cost

• But then processing strings is fast

CMSC330 Fall 2025

Closing the Loop: Reducing DFA to RE

DFA NFA

RE

can transform

can

reduce

can transform

CMSC330 Fall 2025

40

Reducing DFAs to REs

General idea

• Remove states one by one, labeling transitions with regular

expressions

• When two states are left (start and final), the transition label is

the regular expression for the DFA

CMSC330 Fall 2025

DFA to RE example

Language over = {0,1} such that every string is a multiple of 3 in binaryΣ

CMSC330 Fall 2025

43

Minimizing DFAs

Every regular language is recognizable by a unique

minimum-state DFA

• Ignoring the particular names of states

In other words

• For every DFA, there is a unique DFA with minimum number

of states that accepts the same language

b
p1 p2 p3

a

b

p1 p2

p3

c

c

a

CMSC330 Fall 2025

44

Minimizing DFA: Hopcroft Reduction

Intuition

• Look to distinguish states from each other

➢ End up in different accept / non-accept state with identical input

Algorithm

• Construct initial partition

➢ Accepting & non-accepting states

• Iteratively split partitions (until partitions remain fixed)

➢ Split a partition if members in partition have transitions to different

partitions for same input

• Two states x, y belong in same partition if and only if for all symbols in Σ

they transition to the same partition

• Update transitions & remove dead states

J. Hopcroft, “An n log n algorithm for minimizing states in a finite automaton,” 1971

CMSC330 Fall 2025

45

Splitting Partitions

No need to split partition {S,T,U,V}

• All transitions on a lead to identical partition P2

• Even though transitions on a lead to different states

S
a

P2

U

T

X

Z

Y

P1

a

a

V
a

CMSC330 Fall 2025

46

Splitting Partitions (cont.)

Need to split partition {S,T,U} into {S,T}, {U}

• Transitions on a from S,T lead to partition P2

• Transition on a from U lead to partition P3

S
a

P2

U

T

X

Z

Y

P1

a

a P3

P4

b

CMSC330 Fall 2025

47

Resplitting Partitions

Need to reexamine partitions after splits

• Initially no need to split partition {S,T,U}

• After splitting partition {X,Y} into {X}, {Y} we need to split partition

{S,T,U} into {S,T}, {U}

S
a

P2

U

T

X

Y

P1
a

a
P4

P3

b

b

CMSC330 Fall 2025

48

Minimizing DFA: Example 1

DFA

Initial partitions

Split partition

CMSC330 Fall 2025

49

Minimizing DFA: Example 1

DFA

Initial partitions

• Accept

• Reject

Split partition?

• move(S,a) – move(S,b)

• move(T,a) – move (T,b)

{ R } = P1

{ S, T } = P2

= T ∈ P2

→ Not required, minimization done

= T ∈ P2

= R ∈ P1

= R ∈ P1

P1P2

CMSC330 Fall 2025

50

Minimizing DFA: Example 2

b
S T R

a

b

a

CMSC330 Fall 2025

51

Minimizing DFA: Example 2

DFA

Initial partitions

• Accept

• Reject

Split partition?

• move(S,a) – move(S,b)

• move(T,a) – move (T,b)

b
S T R

a

b

a

{ R }= P1

{ S, T } = P2

= T ∈ P2

P1P2

→ Yes, different partitions for B

= T ∈ P2

= T ∈ P2

= R ∈ P1

P3
DFA

already

minimal

CMSC330 Fall 2025

Brzozowski's algorithm

1. Given a DFA, reverse all the edges, make the initial state

an accept state, and the accept states initial, to get an

NFA

2. NFA-> DFA

3. For the new DFA, reverse the edges (and initial-accept

swap) get an NFA

4. NFA -> DFA

CMSC330 Fall 2025

Brzozowski's algorithm

DFA
NFA

DFANFA

Minimum DFA
CMSC330 Fall 2025

56

Complement of DFA

Given a DFA accepting language L

• How can we create a DFA accepting its complement?

• Example DFA

➢ Σ = {a,b}

CMSC330 Fall 2025

57

Complement of DFA

Algorithm

• Add explicit transitions to a dead state

• Change every accepting state to a non-accepting state & every non-

accepting state to an accepting state

Note this only works with DFAs

• Why not with NFAs?

CMSC330 Fall 2025

58

Summary of Regular Expression Theory

Finite automata

• DFA, NFA

Equivalence of RE, NFA, DFA

• RE → NFA

➢ Concatenation, union, closure

• NFA → DFA

➢ -closure & subset algorithm

DFA

• Minimization, complementation

CMSC330 Fall 2025

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Reducing NFA to DFA
	Slide 3: Why NFA → DFA
	Slide 4: Why NFA → DFA
	Slide 5: How to Convert NFA to DFA
	Slide 6: Subset Construction Algorithm
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Analyzing the Reduction
	Slide 38: Recap: Matching a Regexp R
	Slide 39: Closing the Loop: Reducing DFA to RE
	Slide 40: Reducing DFAs to REs
	Slide 41
	Slide 43: Minimizing DFAs
	Slide 44: Minimizing DFA: Hopcroft Reduction
	Slide 45: Splitting Partitions
	Slide 46: Splitting Partitions (cont.)
	Slide 47: Resplitting Partitions
	Slide 48: Minimizing DFA: Example 1
	Slide 49: Minimizing DFA: Example 1
	Slide 50: Minimizing DFA: Example 2
	Slide 51: Minimizing DFA: Example 2
	Slide 52
	Slide 53
	Slide 56: Complement of DFA
	Slide 57: Complement of DFA
	Slide 58: Summary of Regular Expression Theory

