CMSC 330: Organization of Programming
Languages

Regular Expressions and
Finite Automata

CMSC330 Fall 2025

How do regular expressions work”?

» What we've learned
* What regular expressions are
* What they can express, and cannot
* Programming with them

» What's next: how they work
* A great computer science result

CMSC330 Fall 2025

A Few Questions About REs

» How are REs implemented?

e Given an arbitrary RE and a string, how to decide whether the
RE matches the string?

» What are the basic components of REs?

e Can implement some features in terms of others
» E.Q., et is the same as ee”

» What does a regular expression represent?

e Just a set of strings
» This observation provides insight on how we go about our implementation

CMSC330 Fall 2025

Definition: Alphabet

» An alphabet is a finite set of symbols
e Usually denoted 2

» Example alphabets:
* Binary: 2 ={0,1}

e Decimal: 2 = {0,1 ,2,3,4,5,6,7,8,9}

* Alphanumeric: 2 ={0-9,a-z,A-Z}

CMSC330 Fall 2025

Definition: String

» A string is a finite sequence of symbols from 2
* ¢£is the empty string ("" in OCaml)

* |s| is the length of string s
> |Hello| =5,] =0
* Note

> @ is the empty set (with 0 elements)
> #{e}(and O #¢)

» Example strings over alphabet 2 = {0,1} (binary):
* 0101
0101110
* £

CMSC330 Fall 2025

Definition: Language

» Alanguage L is a set of strings over an alphabet

» Example: All strings of length 1 or 2 over alphabet 2 = {a, b, c}
that begin with a

e L={a,aa,ab,ac}

» Example: All strings over 2 = {a, b}
 L={¢, a,b, aa, bb, ab, ba, aaa, bba, aba, baa, ... }
* Language of all strings written 2*

CMSC330 Fall 2025

Definition: Language (cont.)

» Example: The set of phone numbers over the alphabet 2 = {0, 1, 2,
3,4,5,6,7,8,9,(),-)
* Give an example element of this language (123)456-7890
* Are all strings over the alphabet in the language? No

* Is there a regular expression for this language?
\(\d{3}\)\d{3}-\d{4}

» Example: The set of all valid (runnable) OCaml programs
* Later we’ll see how we can specify this language
* (Regular expressions are useful, but not sufficient)

CMSC330 Fall 2025

Operations on Languages

» Let 2 be an alphabetand letL, L,, L, be languages over 2

» Concatenation L,L, creates a language defined as
* Lilb, ={xy|xeLljandy e Ly}

» Union creates a language defined as
¢ L1UL2={X|X€L1 OFX€L2}

» Kleene closure creates a language is defined as
e L*={x|x=¢corxelLorxelLLorxelLLLor...}

CMSC330 Fall 2025 8

Operations Examples

Let Ly ={a,b}, L,={1,2, 3} (and = = {a,b,1,2,3})

» Whatis L,L, ?
* {a1, a2, a3, b1, b2, b3}

» Whatis LU L, ?
«{a,b,1,2,3}

» Whatis L;* ?
 {€, a,b, aa, bb, ab, ba, aaa, aab, bba, bbb, aba, abb, baa, bab, ...}

CMSC330 Fall 2025 9

Quiz 1: Which string is not in L

={a, ab, c, d, ¢} where 2 =
{a,b,c,d}

= {d}
L3 L, UL,

OO wx>
O M O 0O

CMSC330 Fall 2025

10

Quiz 1: Which string is not in L

={a, ab, c, d, ¢} where 2 =
{a,b,c,d}

= {d}
L3 L, UL,

OO wx>
O M O O

CMSC330 Fall 2025

11

Quiz 2: Which string is not in L,

|_1 = {a, ab, c, d, E} where 2. =
{a,b,c,d}

L, = {d}

L3 = Lq(Ly7)

A.a
B. abd

C.abdd
D.adad

CMSC330 Fall 2025

12

Quiz 2: Which string is not in L

|_1 = {a, ab, C, d, E} where 2. =
{a,b,c,d}

L, = {d}

L3 = Lq(L2")

A.a
B. abd

C.abdd
D.adad

CMSC330 Fall 2025

13

Regular Expressions: Grammar

» We can define a grammar for regular expressions R

R:=0

€

0}
R;R,
Ry|R;
R*

CMSC330 Fall 2025

The empty language

The empty string

A symbol from alphabet 2

The concatenation of two regexps
The union of two regexps

The Kleene closure of a regexp

14

Regular Languages

» Regular expressions denote regular languages

» Not all languages are regular
* Examples (without proof):
> The set of palindromes over %
>{a"|n>0} (a"=sequence ofna’s)
» Almost all programming languages are not regular
* But aspects of them sometimes are (e.q., identifiers)
* Regular expressions are commonly used in parsing tools

CMSC330 Fall 2025

15

Semantics: Regular Expressions (1)

» Given an alphabet 2, the regular expressions over 2 are
defined inductively as follows

Constants

regular expression denotes language
% Q

€ __§

each symbol(o € 2 {a>

Ex: with 2 ={a, b }, regex a denotes language {a}
regex b denotes language {b}

CMSC330 Fall 2025 16

Semantics: Regular Expressions (2)

» Let A and B be regular expressions denoting languages L,
and Lg, respectively. Then:

Operations
regular expression denotes language
AB Lalg
A|B LaU Lg
A* Ln*

» There are no other regular expressions over 2

CMSC330 Fall 2025 17

Terminology etc.

» Regexps apply operations to symbols
* Generates a set of strings (i.e., a language)
» (Formal definition shortly)
 Examples
» a generates language {a}
» a|b generates language {a} u {b} = {a, b}
» a* generates language {efu{aju{aalu...={g a, aa, ... }

» If s € language L generated by a RE r, we say that r
accepts, describes, or recognizes string s

CMSC330 Fall 2025

18

Regular Expressions

» Almost all of the features we’ve seen for REs can be
reduced to this formal definition
* OCaml — concatenation of single-symbol REs
e /(OCaml|Rust)/ — union

/(OCaml)*/ — Kleene closure

[(OCaml)+/ — same as (OCaml)(OCaml)*

/(Ocaml)?/ — same as (g|(OCaml))

/[[a-z]/ — same as (a|b|c|...|z)

/ [*0-9])/ — same as (a|b]c|...) for a,b,c,... € 2 - {0..9}

A $ — correspond to extra symbols in alphabet

» Think of every string containing a distinct, hidden symbol at its start and at

its end — these are written » and $
CMSC330 Fall 2025 19

Implementing Regular Expressions

» We can implement a regular expression by turning it into a
finite automaton
* A “machine” for recognizing a regular language

“String”
“String”

“String” 9
“String”
“String”

“String”

CMSC330 Fall 2025 20

Finite Automaton

CMSC330 Fall 2025

Elements

States S
(start, final)
Alphabet 2
Transition
edges 0

21

Finite Automaton Tansition on 1

Start state Final state

Elements

« States S
(start, final)

* Alphabet 2

* Transition

» Machine starts in start or initial state edges 0
» Repeat until the end of the string s is reached

e Scan the next symbol o € Z of the string s

* Take transition edge labeled with o

» String s is accepted if automaton is in final
state when end of string s is reached

CMSC330 Fall 2025

States 0 1

22

Finite Automaton: States

» Start state
e State with incoming transition from no other state

e Can have only one start state :

» Final states

» States with double circle

* Can have zero or more final states
* Any state, including the start state, can be final

CMSC330 Fall 2025

23

Finite Automaton: Example 1

1

O®:0

0 1

001011

CMSC330 Fall 2025

Accepted?
Yes

24

Finite Automaton: Example 2

1

O®:0

0 1

001010

CMSC330 Fall 2025

Accepted?
No

25

Quiz 3: What Language is This?

OO w>

> > > >

strings over {0, 1}

strings over {1}

strings over {0, 1} of length 1
strings over {0, 1} that end in 1

CMSC330 Fall 2025

26

Quiz 3: What Language is This?

1

O®:0

0 1

CMSC330 Fall 2025

00 w>

> > > >

strings over {0, 1}

strings over {1}

strings over {0, 1} of length 1
strings over {0, 1} that end in 1

regular expression for this language is (0]1)*1

27

Finite Automaton: Example 3

CMSC330 Fall 2025

string

state at
end

accept

aabcc

(a,b,c notation shorthand for three self loops)

28

Finite Automaton: Example 3

CMSC330 Fall 2025

string | state at | accept
end s?
aabcc S2 Y

(a,b,c notation shorthand for three self loops)

29

Finite Automaton: Example 3

CMSC330 Fall 2025

string

state at
end

accept

dacCa

(a,b,c notation shorthand for three self loops)

30

Finite Automaton: Example 3

CMSC330 Fall 2025

string | state at | accept
end s?
acca S3 N

(a,b,c notation shorthand for three self loops)

31

Finite Automaton: Example 3

CMSC330 Fall 2025

string

state at
end

accept

aacbbb

(a,b,c notation shorthand for three self loops)

32

Finite Automaton: Example 3

CMSC330 Fall 2025

string | state at | accept
end s?
aacbbb S3 N

(a,b,c notation shorthand for three self loops)

33

Finite Automaton: Example 3

CMSC330 Fall 2025

string

state at
end

accept

(a,b,c notation shorthand for three self loops)

34

Finite Automaton: Example 3

CMSC330 Fall 2025

string | state at | accept
end s?
€ SO Y

(a,b,c notation shorthand for three self loops)

35

Finite Automaton: Example 3

CMSC330 Fall 2025

string

state at
end

accept

acba

(a,b,c notation shorthand for three self loops)

36

Finite Automaton: Example 3

CMSC330 Fall 2025

string | state at | accept
end s?
acba S3 N

(a,b,c notation shorthand for three self loops)

37

Quiz 4: Which string is not accepted?

A. bcca
B. abbbc

C. ccc
D. ¢

(a,b,c notation shorthand for three self loops)
CMSC330 Fall 2025

38

Quiz 4: Which string is not accepted?

A. bcca
B. abbbc

C. ccc
D. ¢

(a,b,c notation shorthand for three self loops)
CMSC330 Fall 2025

39

Finite Automaton: Example 3

What language does
this FA accept?

a*b*c*

S3 is a dead state —
a nonfinal state with
no transition to

another state

- aka a trap state
CMSC330 Fall 2025 40

Finite Automaton: Example 4

Language?
a*b*c* again, so FAs are not unique

CMSC330 Fall 2025

41

Dead State: Shorthand Notation

» If a transition is omitted, assume it goes to a dead state
that is not shown

1,3

. is short for

0,2

» Language”?

e Strings over {0,1,2,3} with alternating even and odd digits,
beginning with odd digit

CMSC330 Fall 2025

42

Finite Automaton: Example 5

» Description for each state
« SO = “Haven't seen anything yet” OR “Last symbol seen was a b”
« S1 = "Last symbol seen was an a”
« S2 = “Last two symbols seen were ab”
« S3 = “Last three symbols seen were abb”

CMSC330 Fall 2025 43

Finite Automaton: Example 5

» Language as a regular expression?
. (a|b)*abb

CMSC330 Fall 2025

44

Quiz 5

“§— Q.

b

Over 2={a,b}, this FA accepts only:

A. A string that contains a single b.
8. Any string in {a,b}.
c. A string that starts with b followed by a’s.

p. One or more b’s, followed by zero or more a’s.

CMSC330 Fall 2025

45

Quiz 5

g Q.

b

Over 2={a,b}, this FA accepts only:

A. A string that contains a single b.
8. Any string in {a,b}.
c. A string that starts with b followed by a’s.

p. One or more b’s, followed by zero or more a’s.

CMSC330 Fall 2025

46

Exercises: Define an FA over 2 = {0,1}

>

That accepts strings containing two consecutive 0Os
followed by two consecutive 1s

That accepts strings with an odd number of 1s

That accepts strings containing an even number of Os and
any number of 1s

That accepts strings containing an odd number of Os and
odd number of 1s

That accepts strings that DO NOT contain odd number of
Os and an odd number of 1s

CMSC330 Fall 2025 47

Exercises: Define an FA over 2 = {0,1}

» That accepts strings with an odd number of 1s

CMSC330 Fall 2025

48

Exercises: Define an FA over 2 = {0,1}

» That accepts strings with an odd number of 1s

1 0

1

CMSC330 Fall 2025

49

Exercises: Define an FA over 2 = {a,b}

» That accepts strings containing an even number of a's and
any number of b’s

CMSC330 Fall 2025 50

Exercises: Define an FA over 2 = {0,1}

» That accepts strings containing an even number of Os and
any number of 1s

CMSC330 Fall 2025 51

Exercises: Define an FA over 2 = {0,1}

» That accepts strings containing two consecutive Os
followed by two consecutive 1s

CMSC330 Fall 2025

52

Exercises: Define an FA over 2 = {0,1}

» That accepts strings containing two consecutive Os very
immediately (right after, no other things in between)
followed by two consecutive 1s

‘ 0
A 0 .
D SO
0

CMSC330 Fall 2025 53

Exercises: Define an FA over 2 = {0,1}

» That accepts strings end with two consecutive Os followed
by two consecutive 1s

CMSC330 Fall 2025 54

Exercises: Define an FA over 2 = {0,1}

» That accepts strings end with two consecutive Os followed
by two consecutive 1s

CMSC330 Fall 2025 55

Exercises: Define an FA over 2 = {0,1}

» That accepts strings containing an odd number of Os and
odd number of 1s

CMSC330 Fall 2025

56

Exercises: Define an FA over 2 = {0,1}

» That accepts strings containing an odd number of Os and
odd number of 1s

4 states:

Os 1s
e e

O €
e O
O O

CMSC330 Fall 2025

Exercises: Define an FA over 2 = {0,1}

» That accepts strings that DO NOT contain odd number of
Os and an odd number of 1s

CMSC330 Fall 2025

58

Exercises: Define an FA over 2 = {0,1}

» That accepts strings that DO NOT contain odd number of
Os and an odd number of 1s

Flip each state

CMSC330 Fall 2025

59

Languages and Machines

A formal language is a set of strings
of symbols drawn from a finite
alphabet.

Recursively Enumerable
Languages

Recursive
Languages

Context-Free
Languages

Can be specified either by
« aset of rules (such as regular
expressions or a CFG) that
generates the language
« aformal machine that accepts
(recognizes) the language.

Regular
Languages
reg exps

FSMs

unrestricted grammars
Turing Machines

CMSC330 Fall 2025 60

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: How do regular expressions work?
	Slide 3: A Few Questions About REs
	Slide 4: Definition: Alphabet
	Slide 5: Definition: String
	Slide 6: Definition: Language
	Slide 7: Definition: Language (cont.)
	Slide 8: Operations on Languages
	Slide 9: Operations Examples
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Regular Expressions: Grammar
	Slide 15: Regular Languages
	Slide 16: Semantics: Regular Expressions (1)
	Slide 17: Semantics: Regular Expressions (2)
	Slide 18: Terminology etc.
	Slide 19: Regular Expressions
	Slide 20: Implementing Regular Expressions
	Slide 21: Finite Automaton
	Slide 22: Finite Automaton
	Slide 23: Finite Automaton: States
	Slide 24: Finite Automaton: Example 1
	Slide 25: Finite Automaton: Example 2
	Slide 26: Quiz 3: What Language is This?
	Slide 27: Quiz 3: What Language is This?
	Slide 28: Finite Automaton: Example 3
	Slide 29: Finite Automaton: Example 3
	Slide 30: Finite Automaton: Example 3
	Slide 31: Finite Automaton: Example 3
	Slide 32: Finite Automaton: Example 3
	Slide 33: Finite Automaton: Example 3
	Slide 34: Finite Automaton: Example 3
	Slide 35: Finite Automaton: Example 3
	Slide 36: Finite Automaton: Example 3
	Slide 37: Finite Automaton: Example 3
	Slide 38: Quiz 4: Which string is not accepted?
	Slide 39: Quiz 4: Which string is not accepted?
	Slide 40: Finite Automaton: Example 3
	Slide 41: Finite Automaton: Example 4
	Slide 42: Dead State: Shorthand Notation
	Slide 43: Finite Automaton: Example 5
	Slide 44: Finite Automaton: Example 5
	Slide 45: Quiz 5
	Slide 46: Quiz 5
	Slide 47: Exercises: Define an FA over Σ = {0,1}
	Slide 48: Exercises: Define an FA over Σ = {0,1}
	Slide 49: Exercises: Define an FA over Σ = {0,1}
	Slide 50: Exercises: Define an FA over Σ = {a,b}
	Slide 51: Exercises: Define an FA over Σ = {0,1}
	Slide 52: Exercises: Define an FA over Σ = {0,1}
	Slide 53: Exercises: Define an FA over Σ = {0,1}
	Slide 54: Exercises: Define an FA over Σ = {0,1}
	Slide 55: Exercises: Define an FA over Σ = {0,1}
	Slide 56: Exercises: Define an FA over Σ = {0,1}
	Slide 57: Exercises: Define an FA over Σ = {0,1}
	Slide 58: Exercises: Define an FA over Σ = {0,1}
	Slide 59: Exercises: Define an FA over Σ = {0,1}
	Slide 60

