
CMSC 330:  Organization of Programming 
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OCaml Regular Expressions
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String Processing in OCaml

String module provides many useful functions for 

manipulating strings

• Concatenate two strings

• Extract substrings

• Search for a substring and Replace with something else
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String Operations in OCaml
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What if we want to find more complicated patterns? E.g.,

• Either Steve, Stephen, Steven, Stefan, or Esteve

• All words that have even number vowels

We need Regular Expressions



Regular Expressions

A regular expression is a pattern that describes a set of 

strings. It is useful for

• Searching and matching

• Formally describing strings

➢ The symbols (lexemes or tokens) that make up a language

Common to lots of languages and tools

• Syntax for them in sed, grep, awk, Perl, Python, Ruby, …

➢ Popularized (and made fast) as a language feature in Perl

Based on some elegant theory

• Future lecture
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OCaml Regular Expressions
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Multiple Regexp libraries exist:

• RE: a pure OCaml regular expressions library that supports several 

formats (glob, posix, str…)

• In this lecture, we will use the posix format of the RE library

• Str: OCaml comes with the Str module. 

• This module is not recommended because it is not particularly 

fast 

• It does not support Unicode



Example 

#require "re” (* only needed in Utop *)

# let str2re t = Re.Posix.compile (Re.Posix.re t);;

#let r = str2re "[a-z][0-9]+";;

   val r : re = <abstr>

# Re.matches r "a12#b22abcd";;

- : string list = ["a12"; "b22"]
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A letter followed by 

one or more digits



Basic Concepts

A regular expression is a pattern that the regular expression 

engine attempts to match in input text. 

A pattern consists of one or more character literals, 

operators, or constructs.

• “OCaml”: Strings are matched exactly

• “a|b”: A vertical bar separates alternatives. (Boolean Or)

• “ab*”: A quantifier (?, *, +, {n}) after an element (such as a 

character, or group) specifies how many times the element is 

allowed to repeat. 

• The wildcard . matches any character. 
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Repetition in Regular Expressions

The following are suffixes on a regular expression e

e*  zero or more occurrences of e

e+  one or more occurrences of e

   so e+ is the same as ee*

a*   “”, “a”, “aa”, “aaa”, …

a+  “a”, “aa”, “aaa”, … 

bc*  “b”, “bc”, “bcc”, …

a+b*  “a”, “ab”, “aa”, “aab”, “aabb”, “aabbb”, “aaa”, …
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Repetition in Regular Expressions

The following are suffixes on a regular expression e

e*  zero or more occurrences of e

e+  one or more occurrences of e

   so e+ is the same as ee*

e?  exactly zero or one e

e{x}  exactly x occurrences of e

e{x,}  at least x occurrences of e

e{x,y}  at least x and at most y occurrences of e
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Watch Out for Precedence

(OCaml)* means {"", ”OCaml", ”OCamlOCaml", ...}

OCaml* means {”OCam", ”OCaml", ”OCamlllll", ...}

Best to use parentheses to disambiguate

• Note that parentheses have another use, to extract matches, as 

we’ll see later
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Character Classes

[abcd]
• {"a", "b", "c", "d"}  (Can you write this another way?)

[a-zA-Z0-9]
• Any upper- or lower-case letter or digit

[^0-9]
• Any character except 0-9 (the ^ means not, and must come first)

[\t\n ]

• Tab, newline or space

[a-zA-Z_\$][a-zA-Z_\$0-9]*
• Java identifiers ($ escaped...see next slide)
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Special Characters

^   beginning of line

$   end of line

\$   just a $

Languages like Ruby and Python provide more special characters

12

Using ^pattern$ 

ensures entire 

string/line must 

match pattern
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Potential Syntax Confusions

^ 
• Inside regex character class: not 

• Outside regex character class: beginning of line

( )
• Inside character classes: literal characters ( )

➢ Note /(0..2)/ does not mean 012

• Outside character classes in regex: used for grouping

– 
• Inside regex character classes: range (e.g., a to z given by [a-z])

• Outside regular expressions: subtraction
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Summary

Let re represents an arbitrary pattern; then: 

• re – matches regexp re

• (re1|re2) – match either re1 or re2

• (re)* – match 0 or more occurrences of re

• (re)+ – match 1 or more occurrences of re

• (re)? – match 0 or 1 occurrences of re

• (re){2} – match exactly two occurrences of re

• [a-z] – same as (a|b|c|...|z)

•  [^0-9] – match any character that is not 0, 1, etc.

• ^, $ – match start or end of string
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Try out regexps at rubular.com
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Regular Expression Practice

Any string containing two consecutive ab

 

Any string containing a or two consecutive b
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Regular Expression Practice

Any string containing two consecutive ab

(ab){2}

Any string containing a or two consecutive b

a|bb
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Regular Expression Practice

Contains sss or ccc
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Regular Expression Practice

Contains sss or ccc

s{3}|c{3}
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Regular Expression Practice

Contains exactly 2 b's, not necessarily consecutive.

^       b        b        $
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beginning end

2 b's



Regular Expression Practice

Contains exactly 2 b's, not necessarily consecutive.

^       b        b        $
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beginning end

[^b]* [^b]*[^b]*

Any character not b 2 b's



Regular Expression Practice

Starts with c, followed by one lowercase vowel, and ends 

with any number of lowercase letters

^c [aouei] [a-z]* $
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Regular Expression Practice

Starts with c, followed by one lowercase vowel, and ends 

with any number of lowercase letters

^c [aouei] [a-z]* $
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one vowel any number of letters



Regular Expression Practice

Starts with a and has exactly 0 or 1 letter after that
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Regular Expression Practice

Starts with a and has exactly 0 or 1 letter after that

^a[A-Za-z]?$
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Regular Expression Practice

Only lowercase letters, in any amount, in alphabetic 

order
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Regular Expression Practice

Only lowercase letters, in any amount, in alphabetic 

order

^a*b*c*d*e*f*g*h*i*j*k*l*m*n*o*p*r*t*u*v*w*x*y*z*$
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Regular Expression Practice

Contains one or more ab or ba
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Regular Expression Practice

Contains one or more ab or ba

(ab|ba)+
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Regular Expression Practice

Precisely steve, steven, or stephen
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Regular Expression Practice

Precisely steve, steven, or stephen

^ste(ve|phen|ven)$
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Regular Expression Practice

Even length string
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Regular Expression Practice

Even length string

^(..)*$
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any two characters



Regular Expression Practice

Even number of lowercase vowels
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Regular Expression Practice

Even number of lowercase vowels

^([^aouei]*[aouei][^aouei]*[aouei][^aouei]*)*$
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Non-vowel vowel



Regular Expression Practice

Starts with anything but b, followed by one or more a’s 

and then no other characters
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Regular Expression Practice

Starts with anything but b, followed by one or more a’s 

and then no other characters

^[^b]+a+$
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A. 1

B. 2

C. 4

D. More than 4

^Hello, Anyone awake?$

Quiz 1
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How many different strings could this regex match?



A. 1

B. 2

C. 4

D. More than 4

^Hello, Anyone awake?$

How many different strings could this regex match?

Quiz 1
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e or nothing



A. ^[cmsc]$

B. ^c?m?s?c?$

C. ^(c|m|s|c)$

D. ^([cm]|[sc])$

Which regex is not equivalent to the others?

Quiz 2
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A. ^[cmsc]$

B. ^c?m?s?c?$

C. ^(c|m|s|c)$

D. ^([cm]|[sc])$

Which regex is not equivalent to the 
others?

Quiz 2
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A. “cmsc\d\d\d” 

B. “cmsc330”

C. “hellocmsc330”

D. “cmsc330world”

Which string does not match the regex?

Quiz 3

[a-z]{4}[0-9]{3}
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A. “cmsc\d\d\d” 

B. “cmsc330”

C. “hellocmsc330”

D. “cmsc330world”

Which string does not match the regex?

Quiz 3

[a-z]{4}[0-9]{3}
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Recall that without ^ and $, a regex will match any substring



RE Library

• Modules

• Emacs, Glob, Perl, Pcre, Posix, Str

• Basic Functions

• matches:extracts the matched substring 

• compile: Compile a regular expression into an executable version 

that can be used to match strings

• exec:matches str against the compiled expression re, and returns 

the matched groups if any

• split: splits s into chunks separated by the regular expression
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Example  (again)

#require "re” (* only needed in Utop *)

# let str2re t = Re.Posix.compile (Re.Posix.re t);;

#let r = str2re "[a-z][0-9]+";;

   val r : re = <abstr>

# Re.matches r "a12#b22abcd";;

- : string list = ["a12"; "b22"]
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A letter followed by 

one or more digits



Extracting Substrings based on Regexps

Capturing Groups

• Re remembers which strings matched the parenthesized parts of 

a Regexp

• These parts can be referred as Groups
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Example: Capturing Groups

Input
Min:1 Max:27

Min:10 Max:30

Min:  11 Max: 30

Min: a Max: 24

Output
min=1 max=27

min=10 max=30
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let r = str2re "^Min:([0-9]+) Max:([0-9]+)$";;

let t = Re.exec r "Min:50 Max:99";;  

let min = Re.Group.get t 1;;   (* 50 *)

let max = Re.Group.get t 2;;   (* 99 *)

Extra space messes up match
Not a digit; messes up match



A. H

B. HELP

C. I

D. I’m stuck

let r = str2re “([A-Z]+)”

let t = Re.exec r “HELP! I’m stuck”

Re.Group.get t 1

What is the output of the following code?

Quiz 4
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A. H

B. HELP

C. I

D. I’m stuck

let r = str2re “([A-Z]+)”

Let t = Re.exec r “HELP! I’m stuck”

Re.Group.get t 1

What is the output of the following code?

Quiz 4
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A. afraid

B. 7

C. 6

D. (empty string)

let r = str2re “[0-9] ([A-Za-z]+).*([0-9])”;;

let t = Re.exec r “Why was 6 afraid of 7?”;;

Re.Group.get t 2

What is the output of the following code?

Quiz 5
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A. afraid

B. 7

C. 6

D. (empty string)

let r = str2re “[0-9] ([A-Za-z]+).*([0-9])”;;

let t = Re.exec r “Why was 6 afraid of 7?”;;

Re.Group.get t 2

What is the output of the following code?

Quiz 5
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Re.matches

extracts all matched substrings as a list
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let r = str2re "[A-Za-z]+ [0-9]+";;

Re.matches r "CMSC 330 Spring 2021";;

# ["CMSC 330", ”Spring 2021"]

let r = str2re “[A-Za-z0-9]{2}”

Re.matches r "CMSC 330 Spring 2021";;

["CM", "SC", "33", "Sp", "ri", "ng", "20", "21"]



Quiz 6

A. ["Hello”; “World”]

B. ["Hello World”]

C. ["He"; "ll"; "Wo"; "rl"]

D. ["He"; "ll"; "o " "Wo"; "rl"; "d" ]

let r = str2re "[A-Za-z]{2}";; 

Re.matches r "Hello World";;

What is the output of the following code?
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Quiz 6

A. ["Hello”; “World”]

B. ["Hello World”]

C. ["He"; "ll"; "Wo"; "rl"]

D. ["He"; "ll"; "o " "Wo"; "rl"; "d" ]

let r = str2re "[A-Za-z]{2}";; 

Re.matches r "Hello World";;

What is the output of the following code?
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Quiz 7

A. [“To”,”be,”,”or”,”not”,”to”,”be!”]

B. [“To”,”be”,”or”,”not”,”to”,”be”]

C. [[“To”,”be,”],[“or”,”not”],[“to”,”be!”]]

D. [“to”,”be!”]

let r = str2re "[A-Za-z]+";;

Re.matches r "To be, or not to be!";;

What is the output of the following code?
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Quiz 7

A. [“To”,”be,”,”or”,”not”,”to”,”be!”]

B. [“To”,”be”,”or”,”not”,”to”,”be”]

C. [[“To”,”be,”],[“or”,”not”],[“to”,”be!”]]

D. [“to”,”be!”]

let r = str2re "[A-Za-z]+";;

Re.matches r "To be, or not to be!";;

What is the output of the following code?
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