
CMSC 330: Organization of Programming

Languages

OCaml Regular Expressions

1CMSC330 Fall 2025

String Processing in OCaml

String module provides many useful functions for

manipulating strings

• Concatenate two strings

• Extract substrings

• Search for a substring and Replace with something else

2CMSC330 Fall 2025

String Operations in OCaml

3CMSC330 Fall 2025

What if we want to find more complicated patterns? E.g.,

• Either Steve, Stephen, Steven, Stefan, or Esteve

• All words that have even number vowels

We need Regular Expressions

Regular Expressions

A regular expression is a pattern that describes a set of

strings. It is useful for

• Searching and matching

• Formally describing strings

➢ The symbols (lexemes or tokens) that make up a language

Common to lots of languages and tools

• Syntax for them in sed, grep, awk, Perl, Python, Ruby, …

➢ Popularized (and made fast) as a language feature in Perl

Based on some elegant theory

• Future lecture

4CMSC330 Fall 2025

OCaml Regular Expressions

5CMSC330 Fall 2025

Multiple Regexp libraries exist:

• RE: a pure OCaml regular expressions library that supports several

formats (glob, posix, str…)

• In this lecture, we will use the posix format of the RE library

• Str: OCaml comes with the Str module.

• This module is not recommended because it is not particularly

fast

• It does not support Unicode

Example

#require "re” (* only needed in Utop *)

let str2re t = Re.Posix.compile (Re.Posix.re t);;

#let r = str2re "[a-z][0-9]+";;

 val r : re = <abstr>

Re.matches r "a12#b22abcd";;

- : string list = ["a12"; "b22"]

6CMSC330 Fall 2025

A letter followed by

one or more digits

Basic Concepts

A regular expression is a pattern that the regular expression

engine attempts to match in input text.

A pattern consists of one or more character literals,

operators, or constructs.

• “OCaml”: Strings are matched exactly

• “a|b”: A vertical bar separates alternatives. (Boolean Or)

• “ab*”: A quantifier (?, *, +, {n}) after an element (such as a

character, or group) specifies how many times the element is

allowed to repeat.

• The wildcard . matches any character.

7CMSC330 Fall 2025

Repetition in Regular Expressions

The following are suffixes on a regular expression e

e* zero or more occurrences of e

e+ one or more occurrences of e

 so e+ is the same as ee*

a* “”, “a”, “aa”, “aaa”, …

a+ “a”, “aa”, “aaa”, …

bc* “b”, “bc”, “bcc”, …

a+b* “a”, “ab”, “aa”, “aab”, “aabb”, “aabbb”, “aaa”, …

8CMSC330 Fall 2025

Repetition in Regular Expressions

The following are suffixes on a regular expression e

e* zero or more occurrences of e

e+ one or more occurrences of e

 so e+ is the same as ee*

e? exactly zero or one e

e{x} exactly x occurrences of e

e{x,} at least x occurrences of e

e{x,y} at least x and at most y occurrences of e

9CMSC330 Fall 2025

Watch Out for Precedence

(OCaml)* means {"", ”OCaml", ”OCamlOCaml", ...}

OCaml* means {”OCam", ”OCaml", ”OCamlllll", ...}

Best to use parentheses to disambiguate

• Note that parentheses have another use, to extract matches, as

we’ll see later

10CMSC330 Fall 2025

Character Classes

[abcd]
• {"a", "b", "c", "d"} (Can you write this another way?)

[a-zA-Z0-9]
• Any upper- or lower-case letter or digit

[^0-9]
• Any character except 0-9 (the ^ means not, and must come first)

[\t\n]

• Tab, newline or space

[a-zA-Z_\$][a-zA-Z_\$0-9]*
• Java identifiers ($ escaped...see next slide)

11CMSC330 Fall 2025

Special Characters

^ beginning of line

$ end of line

\$ just a $

Languages like Ruby and Python provide more special characters

12

Using ^pattern$

ensures entire

string/line must

match pattern

CMSC330 Fall 2025

Potential Syntax Confusions

^
• Inside regex character class: not

• Outside regex character class: beginning of line

()
• Inside character classes: literal characters ()

➢ Note /(0..2)/ does not mean 012

• Outside character classes in regex: used for grouping

–
• Inside regex character classes: range (e.g., a to z given by [a-z])

• Outside regular expressions: subtraction

13CMSC330 Fall 2025

14

Summary

Let re represents an arbitrary pattern; then:

• re – matches regexp re

• (re1|re2) – match either re1 or re2

• (re)* – match 0 or more occurrences of re

• (re)+ – match 1 or more occurrences of re

• (re)? – match 0 or 1 occurrences of re

• (re){2} – match exactly two occurrences of re

• [a-z] – same as (a|b|c|...|z)

• [^0-9] – match any character that is not 0, 1, etc.

• ^, $ – match start or end of string

CMSC330 Fall 2025

Try out regexps at rubular.com

15CMSC330 Fall 2025

Regular Expression Practice

Any string containing two consecutive ab

Any string containing a or two consecutive b

16CMSC330 Fall 2025

Regular Expression Practice

Any string containing two consecutive ab

(ab){2}

Any string containing a or two consecutive b

a|bb

17CMSC330 Fall 2025

Regular Expression Practice

Contains sss or ccc

18CMSC330 Fall 2025

Regular Expression Practice

Contains sss or ccc

s{3}|c{3}

19CMSC330 Fall 2025

Regular Expression Practice

Contains exactly 2 b's, not necessarily consecutive.

^ b b $

20CMSC330 Fall 2025

beginning end

2 b's

Regular Expression Practice

Contains exactly 2 b's, not necessarily consecutive.

^ b b $

21CMSC330 Fall 2025

beginning end

[^b]* [^b]*[^b]*

Any character not b 2 b's

Regular Expression Practice

Starts with c, followed by one lowercase vowel, and ends

with any number of lowercase letters

^c [aouei] [a-z]* $

22CMSC330 Fall 2025

Regular Expression Practice

Starts with c, followed by one lowercase vowel, and ends

with any number of lowercase letters

^c [aouei] [a-z]* $

23CMSC330 Fall 2025

one vowel any number of letters

Regular Expression Practice

Starts with a and has exactly 0 or 1 letter after that

24CMSC330 Fall 2025

Regular Expression Practice

Starts with a and has exactly 0 or 1 letter after that

^a[A-Za-z]?$

25CMSC330 Fall 2025

Regular Expression Practice

Only lowercase letters, in any amount, in alphabetic

order

26CMSC330 Fall 2025

Regular Expression Practice

Only lowercase letters, in any amount, in alphabetic

order

^a*b*c*d*e*f*g*h*i*j*k*l*m*n*o*p*r*t*u*v*w*x*y*z*$

27CMSC330 Fall 2025

Regular Expression Practice

Contains one or more ab or ba

28CMSC330 Fall 2025

Regular Expression Practice

Contains one or more ab or ba

(ab|ba)+

29CMSC330 Fall 2025

Regular Expression Practice

Precisely steve, steven, or stephen

30CMSC330 Fall 2025

Regular Expression Practice

Precisely steve, steven, or stephen

^ste(ve|phen|ven)$

31CMSC330 Fall 2025

Regular Expression Practice

Even length string

32CMSC330 Fall 2025

Regular Expression Practice

Even length string

^(..)*$

33CMSC330 Fall 2025

any two characters

Regular Expression Practice

Even number of lowercase vowels

34CMSC330 Fall 2025

Regular Expression Practice

Even number of lowercase vowels

^([^aouei]*[aouei][^aouei]*[aouei][^aouei]*)*$

35CMSC330 Fall 2025

Non-vowel vowel

Regular Expression Practice

Starts with anything but b, followed by one or more a’s

and then no other characters

36CMSC330 Fall 2025

Regular Expression Practice

Starts with anything but b, followed by one or more a’s

and then no other characters

^[^b]+a+$

37CMSC330 Fall 2025

A. 1

B. 2

C. 4

D. More than 4

^Hello, Anyone awake?$

Quiz 1

38CMSC330 Fall 2025

How many different strings could this regex match?

A. 1

B. 2

C. 4

D. More than 4

^Hello, Anyone awake?$

How many different strings could this regex match?

Quiz 1

39CMSC330 Fall 2025

e or nothing

A. ^[cmsc]$

B. ^c?m?s?c?$

C. ^(c|m|s|c)$

D. ^([cm]|[sc])$

Which regex is not equivalent to the others?

Quiz 2

40CMSC330 Fall 2025

A. ^[cmsc]$

B. ^c?m?s?c?$

C. ^(c|m|s|c)$

D. ^([cm]|[sc])$

Which regex is not equivalent to the
others?

Quiz 2

41CMSC330 Fall 2025

A. “cmsc\d\d\d”

B. “cmsc330”

C. “hellocmsc330”

D. “cmsc330world”

Which string does not match the regex?

Quiz 3

[a-z]{4}[0-9]{3}

42CMSC330 Fall 2025

A. “cmsc\d\d\d”

B. “cmsc330”

C. “hellocmsc330”

D. “cmsc330world”

Which string does not match the regex?

Quiz 3

[a-z]{4}[0-9]{3}

43CMSC330 Fall 2025

Recall that without ^ and $, a regex will match any substring

RE Library

• Modules

• Emacs, Glob, Perl, Pcre, Posix, Str

• Basic Functions

• matches:extracts the matched substring

• compile: Compile a regular expression into an executable version

that can be used to match strings

• exec:matches str against the compiled expression re, and returns

the matched groups if any

• split: splits s into chunks separated by the regular expression

CMSC330 Fall 2025 44

Example (again)

#require "re” (* only needed in Utop *)

let str2re t = Re.Posix.compile (Re.Posix.re t);;

#let r = str2re "[a-z][0-9]+";;

 val r : re = <abstr>

Re.matches r "a12#b22abcd";;

- : string list = ["a12"; "b22"]

45CMSC330 Fall 2025

A letter followed by

one or more digits

Extracting Substrings based on Regexps

Capturing Groups

• Re remembers which strings matched the parenthesized parts of

a Regexp

• These parts can be referred as Groups

46CMSC330 Fall 2025

Example: Capturing Groups

Input
Min:1 Max:27

Min:10 Max:30

Min: 11 Max: 30

Min: a Max: 24

Output
min=1 max=27

min=10 max=30

CMSC330 Fall 2025 47

let r = str2re "^Min:([0-9]+) Max:([0-9]+)$";;

let t = Re.exec r "Min:50 Max:99";;

let min = Re.Group.get t 1;; (* 50 *)

let max = Re.Group.get t 2;; (* 99 *)

Extra space messes up match
Not a digit; messes up match

A. H

B. HELP

C. I

D. I’m stuck

let r = str2re “([A-Z]+)”

let t = Re.exec r “HELP! I’m stuck”

Re.Group.get t 1

What is the output of the following code?

Quiz 4

48CMSC330 Fall 2025

A. H

B. HELP

C. I

D. I’m stuck

let r = str2re “([A-Z]+)”

Let t = Re.exec r “HELP! I’m stuck”

Re.Group.get t 1

What is the output of the following code?

Quiz 4

49CMSC330 Fall 2025

A. afraid

B. 7

C. 6

D. (empty string)

let r = str2re “[0-9] ([A-Za-z]+).*([0-9])”;;

let t = Re.exec r “Why was 6 afraid of 7?”;;

Re.Group.get t 2

What is the output of the following code?

Quiz 5

50CMSC330 Fall 2025

A. afraid

B. 7

C. 6

D. (empty string)

let r = str2re “[0-9] ([A-Za-z]+).*([0-9])”;;

let t = Re.exec r “Why was 6 afraid of 7?”;;

Re.Group.get t 2

What is the output of the following code?

Quiz 5

51CMSC330 Fall 2025

Re.matches

extracts all matched substrings as a list

52CMSC330 Fall 2025

let r = str2re "[A-Za-z]+ [0-9]+";;

Re.matches r "CMSC 330 Spring 2021";;

["CMSC 330", ”Spring 2021"]

let r = str2re “[A-Za-z0-9]{2}”

Re.matches r "CMSC 330 Spring 2021";;

["CM", "SC", "33", "Sp", "ri", "ng", "20", "21"]

Quiz 6

A. ["Hello”; “World”]

B. ["Hello World”]

C. ["He"; "ll"; "Wo"; "rl"]

D. ["He"; "ll"; "o " "Wo"; "rl"; "d"]

let r = str2re "[A-Za-z]{2}";;

Re.matches r "Hello World";;

What is the output of the following code?

53CMSC330 Fall 2025

Quiz 6

A. ["Hello”; “World”]

B. ["Hello World”]

C. ["He"; "ll"; "Wo"; "rl"]

D. ["He"; "ll"; "o " "Wo"; "rl"; "d"]

let r = str2re "[A-Za-z]{2}";;

Re.matches r "Hello World";;

What is the output of the following code?

54CMSC330 Fall 2025

Quiz 7

A. [“To”,”be,”,”or”,”not”,”to”,”be!”]

B. [“To”,”be”,”or”,”not”,”to”,”be”]

C. [[“To”,”be,”],[“or”,”not”],[“to”,”be!”]]

D. [“to”,”be!”]

let r = str2re "[A-Za-z]+";;

Re.matches r "To be, or not to be!";;

What is the output of the following code?

55CMSC330 Fall 2025

Quiz 7

A. [“To”,”be,”,”or”,”not”,”to”,”be!”]

B. [“To”,”be”,”or”,”not”,”to”,”be”]

C. [[“To”,”be,”],[“or”,”not”],[“to”,”be!”]]

D. [“to”,”be!”]

let r = str2re "[A-Za-z]+";;

Re.matches r "To be, or not to be!";;

What is the output of the following code?

56CMSC330 Fall 2025

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: String Processing in OCaml
	Slide 3: String Operations in OCaml
	Slide 4: Regular Expressions
	Slide 5: OCaml Regular Expressions
	Slide 6: Example
	Slide 7: Basic Concepts
	Slide 8: Repetition in Regular Expressions
	Slide 9: Repetition in Regular Expressions
	Slide 10: Watch Out for Precedence
	Slide 11: Character Classes
	Slide 12: Special Characters
	Slide 13: Potential Syntax Confusions
	Slide 14: Summary
	Slide 15: Try out regexps at rubular.com
	Slide 16: Regular Expression Practice
	Slide 17: Regular Expression Practice
	Slide 18: Regular Expression Practice
	Slide 19: Regular Expression Practice
	Slide 20: Regular Expression Practice
	Slide 21: Regular Expression Practice
	Slide 22: Regular Expression Practice
	Slide 23: Regular Expression Practice
	Slide 24: Regular Expression Practice
	Slide 25: Regular Expression Practice
	Slide 26: Regular Expression Practice
	Slide 27: Regular Expression Practice
	Slide 28: Regular Expression Practice
	Slide 29: Regular Expression Practice
	Slide 30: Regular Expression Practice
	Slide 31: Regular Expression Practice
	Slide 32: Regular Expression Practice
	Slide 33: Regular Expression Practice
	Slide 34: Regular Expression Practice
	Slide 35: Regular Expression Practice
	Slide 36: Regular Expression Practice
	Slide 37: Regular Expression Practice
	Slide 38: Quiz 1
	Slide 39: Quiz 1
	Slide 40: Quiz 2
	Slide 41: Quiz 2
	Slide 42: Quiz 3
	Slide 43: Quiz 3
	Slide 44: RE Library
	Slide 45: Example (again)
	Slide 46: Extracting Substrings based on Regexps
	Slide 47: Example: Capturing Groups
	Slide 48: Quiz 4
	Slide 49: Quiz 4
	Slide 50: Quiz 5
	Slide 51: Quiz 5
	Slide 52: Re.matches
	Slide 53: Quiz 6
	Slide 54: Quiz 6
	Slide 55: Quiz 7
	Slide 56: Quiz 7

