
CMSC 330: Organization of Programming

Languages

OCaml Imperative Programming

1

CMSC330 Fall 2025

So Far, Only Functional Programming

• We haven’t given you any way so far to change something

in memory

• All you can do is create new values from old

• This makes programming easier since it supports

mathematical (i.e., functional) reasoning

• Don’t care whether data is shared in memory

➢ Aliasing is irrelevant

• Calling a function f with the same argument always produces the

same result

➢ For all x and y, we have f x = f y when x = y

2

Imperative OCaml

• Sometimes it is useful for values to change

• Call a function that returns an incremented counter

• Store aggregations in efficient hash tables

• OCaml variables are immutable, but

• OCaml has references, fields, and arrays that are actually

mutable

• I.e., they can change

3

References

• 'a ref: Pointer to a mutable value of type 'a

• There are three basic operations on references:

 ref : 'a -> 'a ref

➢Allocate a reference

 ! : 'a ref -> 'a

➢Read the value stored in reference

 := : 'a ref -> 'a -> unit

Change the value stored in reference

• Binding variable x to a reference is immutable

• The contents of the reference x points to may change

4

5

References Usage

Example:

let z = 3;;

val z : int = 3

let x = ref z;;

val x : int ref = {contents = 3}

let y = x;;

val y : int ref = {contents = 3}

z 3

y

x

contents =

3

6

References Usage

Example:

let z = 3;;

val z : int = 3

let x = ref z;;

val x : int ref = {contents = 3}

let y = x;;

val y : int ref = {contents = 3}

x := 4;;

- : unit = ()

z 3

y

x

contents =

3
contents =

4

7

References Usage

Example:

let z = 3;;

let x = ref z;;

let y = x;;

x := 4;;

!y;;

- : int = 4

z 3

y

x

contents =

3
contents =

4

Aliasing

• Reconsider our example

let z = 3;;

let x = ref z;;

let y = x;;

x := 4;;

Here, variables y and x are aliases:

• In let y = x, variable x evaluates to a location, and y is

bound to the same location

• So, changing the contents of that location will cause both !x and

!y to change

8

z 3

y

x

contents =

3
contents =

4

Quiz 1: What is the value w?

let x = ref 5 in

let y = ref 7 in

let z = y in

let _ = y := 3 in

let w = !y + !z in

w

9

A. 12
B. 6

C. 10

D. 8

Quiz 1: What is the value w?

let x = ref 5 in

let y = ref 7 in

let z = y in

let _ = y := 3 in

let w = !y + !z in

w

10

A. 12
B. 6

C. 10

D. 8
x 5

y 7 3

z

!y + !z = 3 + 3 = 6

Quiz 1a: What is the value w?

let x = ref 5 in

let y = ref 7 in

let z = !y in

let _ = y := 4 in

let w = !y + z in

w

11

A. 12
B. 6

C. 9

D. 11

Quiz 1a: What is the value w?

let x = ref 5 in

let y = ref 7 in

let z = !y in

let _ = y := 4 in

let w = !y + z in

w

12

A. 12
B. 6

C. 9

D. 11
x 5

y 7 4

z=7

!y + z = 4 + 7 = 11

References: Syntax and Semantics

• Syntax: ref e

• Evaluation
• Evaluate e to a value v

• Allocate a new location loc in memory to hold v

• Store v in contents of memory at loc

• Return loc (which is itself a value)

• Type checking
• (ref e) : t ref

• if e : t

13

References: Syntax and Semantics

• Syntax: e1 := e2

• Evaluation
• Evaluate e2 to a value v2

• Evaluate e1 to a location loc

• Store v2 in contents of memory at loc

• Return ()

• Type checking
• (e1 := e2) : unit

• if e1 : t ref and e2 : t

14

References: Syntax and Semantics

• Syntax: !e
• This is not negation. Operator ! is like operator * in C

• Evaluation
• Evaluate e to a location loc

• Return contents v of memory at loc

• Type checking
• !e : t

• if e : t ref

15

Sequences: Syntax and Semantics

• Syntax: e1; e2
• e1; e2 is the same as let () = e1 in e2

• Evaluation
• Evaluate e1 to a value v1

• Evaluate e2 to a value v2

• Return v2

• Throws away v1 – so e1 is useful only if it has side effects, e.g., if it

modifies a reference’s contents or accesses a file

• Type checking
• e1;e2 : t

• if e1 : unit and e2 : t
16

;; versus ;

• ;; ends an expression in the top-level of OCaml

• Use it to say: “Give me the value of this expression”

• Not used in the body of a function

• Not needed after each function definition

➢ Though for now it won’t hurt if used there

• e1; e2 evaluates e1 and then e2, and returns e2

 let print_both (s, t) = print_string s; print_string t;

 "Printed s and t"

• notice no ; at end − it’s a separator, not a terminator

17

18

Grouping Sequences

• If you’re not sure about the scoping rules, use begin...end,

or parentheses, to group together statements with

semicolons

let x = ref 0

let f () =

 begin

 print_string "hello";

 x := !x + 1

 end

let x = ref 0

let f () =

 (

 print_string "hello";

 x := !x + 1

)

Implement a Counter

19

let counter = ref 0 ;;

 val counter : int ref = { contents=0 }

let next () =

 counter := !counter + 1; !counter ;;

val next : unit -> int = <fun>

 # next ();;

- : int = 1

 # next ();;

- : int = 2

20

Hide the Reference

let counter = ref 0 ;;

val counter : int ref = { contents=0 }

let next =

 fun () ->

 counter := !counter + 1; !counter ;;

let next =

 let counter = ref 0 in

 fun () ->

 counter := !counter + 1; !counter ;;

val next : unit -> int = <fun>

next ();;

- : int = 1

next ();;

- : int = 2

21

Hide the Reference, Visualized

let next =

 let cnt = ref 0 in

 fun () ->

 cnt := !cnt + 1; !cnt

let next =

contents =

0

fun () ->

 cnt := !cnt + 1; !cnt
cnt

a closure

22

let next =

 fun () ->

 let counter = ref 0 in

 counter := !counter + 1;

 !counter

A. It returns a boolean, not an integer

B. It returns the same integer every time

C. It returns a reference to an integer instead of an integer

D. Nothing is wrong

Quiz 2: What is wrong with the counter?

23

Quiz 2: What is wrong with the counter?

let next =

 fun () ->

 let counter = ref 0 in

 counter := !counter + 1;

 !counter

A. It returns a boolean, not an integer

B. It returns the same integer every time

C. It returns a reference to an integer instead of an integer

D. Nothing is wrong

24

The Trade-Off Of Side Effects

• Side effects are necessary

• That’s usually why we run software! We want something to

happen that we can observe

• They also make reasoning harder

• Order of evaluation now matters

• No referential transparency

➢ Calling the same function with the same arguments may produce different

results

• Aliasing may result in hard-to-understand bugs

➢ If we call a function with refs r1 and r2, it might do strange things if r1 and

r2 are aliases

Order of Evaluation

• Consider this example

let y = ref 1;;

let f _ z = z+1;; (* ignores first arg *)

let w = f (y:=2) !y;;

w;;

• What is w if f’s arguments are evaluated left to right?

• 3

• What if they are evaluated right to left?

• 2

25

26

OCaml Order of Evaluation

• In OCaml, the order of evaluation is unspecified

• This means that the language doesn’t take a stand, and different

implementations may do different things

• On my Mac, OCaml evaluates right to left

• True for the bytecode interpreter and x86 native code

• Run the previous example and see for yourself!

• Strive to make your programs produce the same answer

regardless of evaluation order

Order of Evaluation

List items are evaluated in right to left order

 let f () = Printf.printf ”F\t";;

 let g () = Printf.printf ”G\t";;

 [f (); g ()]

 G F - : unit list = [(); ()]

g () is called before f ()

27

Quiz 3: Will w’s value differ

let y = ref 1 in

let f z = z := !z+1; !z in

let w = (f y) + (f y) in

w

28

A. True
B. False

If evaluation order is left to right, rather than right to left?

Quiz 3: Will w’s value differ

let y = ref 1 in

let f z = z := !z+1; !z in

let w = (f y) + (f y) in

w

29

A. True
B. False

If evaluation order is left to right, rather than right to left?

Quiz 4: Will w’s value differ

let y = ref 1 in

let f z = z := !z+1; !z in

let w = (f y) + !y in

w

30

A. True
B. False

If evaluation order is left to right, rather than right to left?

Quiz 4: Will w’s value differ

let y = ref 1 in

let f z = z := !z+1; !z in

let w = (f y) + !y in

w

31

A. True
B. False

If evaluation order is left to right, rather than right to left?

left to right: 4

right to left: 3

Quiz 5: Which f is not referentially transparent?

32

I.e., not the case that f x = f y for all x = y

A. let f z =

 let y = ref z in

 y := !y + z;

 !y

B. let f =

 let y = ref 0 in

 fun z ->

 y := !y + z; !y

C. let f z =

 let y = z in

 y+z

D. let f z = z+1

Quiz 5: Which f is not referentially transparent?

33

B. let f =

 let y = ref 0 in

 fun z ->

 y := !y + z; !y

This is basically the counter function

I.e., not the case that f x = f y for all x = y

A. let f z =

 let y = ref z in

 y := !y + z;

 !y

C. let f z =

 let y = z in

 y+z

D. let f z = z+1

Structural vs. Physical Equality

• Structural comparison: = and <>

• Physical comparison: == and !=

• let x = [1;2;3];; let y = [1;2;3];;

• (x = y) (* true *) (x <> y) (* false *)

• (x == y) (* false *) (x != y) (* true *)

• Mostly you want to use = and <>

• E.g., the = operator is used for pattern matching

• But = is a problem with cyclic data structures

34

Equality of refs themselves

• Refs are compared structurally by their contents,

physically by their addresses

• ref 1 = ref 1 (* true *)

• ref 1 <> ref 2 (* true *)

• ref 1 != ref 1 (* true *)

• let x = ref 1 in x == x (* true *)

35

Mutable fields

• Fields of a record type can be declared as mutable:

36

type point = {x:int; y:int; mutable c:string};;

type point = { x : int; y : int; mutable c : string; }

let p = {x=0; y=0; c="red"};;

 val p : point = {x = 0; y = 0; c = "red"}

p.c <- “white”;;

- : unit = ()

p;;

 p : point = {x = 0; y = 0; c = ”white"}

p.x <- 3;;

 Error: The record field x is not mutable

Implementing Refs

• Ref cells are essentially syntactic sugar:

 type 'a ref = { mutable contents: 'a }

 let ref x = { contents = x }

 let (!) r = r.contents

 let (:=) r newval = r.contents <- newval

• ref type is declared in Pervasives

• ref functions are compiled to equivalents of above

37

Arrays

• Arrays generalize ref cells from a single mutable value to a

sequence of mutable values

let v = [|0.; 1.|];;

 val v : float array = [|0.; 1.|]

v.(0) <- 5.;;

 - : unit = ()

v;;

 - : float array = [|5.; 1.|]

38

Quiz 6: What does this evaluate to?

let x = [| 0; 1 |] in

let w = x in

x.(0) <- 1;

x == w

39

A. ()
B. true

C. false

D. Type error

Quiz 6: What does this evaluate to?

let x = [| 0; 1 |] in

let w = x in

x.(0) <- 1;

x == w

40

A. ()
B. true – they point to

the same array

C. false
D. Type error

Control structures

• Traditional loop structures are useful with imperative

features:

 while e1 do e2 done

 for x = e1 to e2 do e3 done

 for x = e1 downto e2 do e3 done

41

for i = 1 to 5 do

 Printf.printf "%d " i

done;;

1 2 3 4 5,

Hash Table

• Hashtbl Module

42

let h = Hashtbl.create 1331;

Hashtbl.add h "alice" 100;;

Hashtbl.add h "bob" 200;;

Hashtbl.iter (Printf.printf "(%s,%d)\n") h;;

(alice,100)

(bob,200)

https://v2.ocaml.org/api/type_Hashtbl.html
https://v2.ocaml.org/api/type_Hashtbl.html

List.assoc as Map

• An association list is an easy implementation of a map

(aka dictionary)

43

let d = [("alice", 100); ("bob", 200);

 ("cathy", 300)]. (* (string * int) list *)

List.assoc "alice" d;;

 - : int = 100

List.assoc "frank" d;;

 Exception: Not_found.

Build a Map Using Functions

44

let empty v = fun _-> 0;;

let update m k v = fun s->if k=s then v else m s

let m = empty 0;;

let m = update m "foo" 100;;

let m = update m "bar" 200;;

let m = update m "baz" 300;;

m "foo";; (* 100 *)

m "bar";; (* 200 *)

let m = update m "foo" 101;;

m "foo";; (* 101 *)

Challenge: change the code to return all the values for a key

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: So Far, Only Functional Programming
	Slide 3: Imperative OCaml
	Slide 4: References
	Slide 5: References Usage
	Slide 6: References Usage
	Slide 7: References Usage
	Slide 8: Aliasing
	Slide 9: Quiz 1: What is the value w?
	Slide 10: Quiz 1: What is the value w?
	Slide 11: Quiz 1a: What is the value w?
	Slide 12: Quiz 1a: What is the value w?
	Slide 13: References: Syntax and Semantics
	Slide 14: References: Syntax and Semantics
	Slide 15: References: Syntax and Semantics
	Slide 16: Sequences: Syntax and Semantics
	Slide 17: ;; versus ;
	Slide 18: Grouping Sequences
	Slide 19: Implement a Counter
	Slide 20: Hide the Reference
	Slide 21: Hide the Reference, Visualized
	Slide 22: Quiz 2: What is wrong with the counter?
	Slide 23: Quiz 2: What is wrong with the counter?
	Slide 24: The Trade-Off Of Side Effects
	Slide 25: Order of Evaluation
	Slide 26: OCaml Order of Evaluation
	Slide 27: Order of Evaluation
	Slide 28: Quiz 3: Will w’s value differ
	Slide 29: Quiz 3: Will w’s value differ
	Slide 30: Quiz 4: Will w’s value differ
	Slide 31: Quiz 4: Will w’s value differ
	Slide 32: Quiz 5: Which f is not referentially transparent?
	Slide 33: Quiz 5: Which f is not referentially transparent?
	Slide 34: Structural vs. Physical Equality
	Slide 35: Equality of refs themselves
	Slide 36: Mutable fields
	Slide 37: Implementing Refs
	Slide 38: Arrays
	Slide 39: Quiz 6: What does this evaluate to?
	Slide 40: Quiz 6: What does this evaluate to?
	Slide 41: Control structures
	Slide 42: Hash Table
	Slide 43: List.assoc as Map
	Slide 44: Build a Map Using Functions

