CMSC 330: Organization of Programming
Languages

OCaml Imperative Programming

CMSC330 Fall 2025

So Far, Only Functional Programming

 We haven't given you any way so far to change something
INn memory
* All you can do is create new values from old

« This makes programming easier since it supports
mathematical (i.e., functional) reasoning
* Don’t care whether data is shared in memory
» Aliasing is irrelevant

* Calling a function f with the same argument always produces the
same result
» Forall xand y, we havefx=fywhenx =y

Imperative OCaml

« Sometimes it is useful for values to change
* Call a function that returns an incremented counter
» Store aggregations in efficient hash tables

« OCaml variables are immutable, but

« OCaml has references, fields, and arrays that are actually
mutable
* |.e., they can change

References

 'a ref: Pointer to a mutable value of type 'a
* There are three basic operations on references:

ref : 'a -> 'a ref

> Allocate a reference

! : 'a ref -> 'a

» Read the value stored in reference
'a ref -> 'a -> unit
Change the value stored in reference
« Binding variable x to a reference is immutable
* The contents of the reference x points to may change

References Usage

Example:

let z = 3;;
val z : int = 3

let x = ref z;;

val x : int ref = {contents = 3}
let y = x;;

val y : int ref = {contents = 3}

contents =

3

References Usage

Example:
let z = 3;;
val z : int = 3 z 3 04°ntents =
let x = ref z;;
val x : int ref = {contents = 3} X /
let yv = x;;
val y : int ref = {contents = 3} Y /
x := 4;;

- : unit = ()

References Usage

Example:
let z = 3;;
YA 3 contents =
let x = ref z;; 4
lety = x x /
x := 4
'y
- : int = 4 Y

Aliasing

« Reconsider our example
let z = 3;;
let x = ref z;;
let yv = x;;

x :=4;;

Here, variables y and x are aliases:

contents =

4

* Inlet y = x, variable x evaluates to a location, and y is

bound to the same location

* So, changing the contents of that location will cause both !'x and

'y to change

Quiz 1: What is the value w?

let x ref 5 in

let y = ref 7 in

let z = y 1in

let =y :=3 in
let w = 'y + 1z in
W

OO w>
o P o P
o

Quiz 1: What is the value w?

let x ref 5 in

let y = ref 7 in

let z = y 1in

let =y :=3 in
let w = 'y + 1z in
W
X— 5
y— 73
Z '

'y + 'z =3 + 3

o0 w>
0 2O
o

10

Quiz 1a: What is the value w?

let x
let y = ref 7 in

ref 5 in

let z = 'y in

let =y =4 in
let w = 'y + z in
W

00w
— O 0O -

11

Quiz 1a: What is the value w?

let x
let y = ref 7 in

ref 5 in

let z = 'y in

let =y =4 in

let w = 'y + z in

W
x—] 5 z="7
Yy 74

OO0 W
- O 0O -

12

References: Syntax and Semantics

e Syntax: ref e

 Evaluation
- Evaluate e to a value v
- Allocate a new location 1oc in memory to hold v
- Store v in contents of memory at 1oc
- Return 1oc (which is itself a value)

* Type checking

* (ref e) : t ref

®ife: t

13

References: Syntax and Semantics

el

e Syntax: el

» Evaluation
- Evaluate e2 to a value v2
- Evaluate el to alocation loc
- Store v2 in contents of memory at 1oc

- Return ()

« Type checking
®* (el := e2) :unit
®ifel: t refande2: t

14

References: Syntax and Semantics

e Syntax: e

® This is not negation. Operator !is like operator * in C

« Evaluation
- Evaluate e to a location 1oc
- Return contents v of memory at 1oc

* Type checking
*le: t

®ife: t ref

15

Sequences: Syntax and Semantics

e Syntax: el; e2

®* el; e2 isthesame as let () = el in e2

 Evaluation
. Evaluate el to a value v1
. Evaluate e2 to a value v2

. Return v2

® Throws away v1 —so el is useful only if it has side effects, e.qg., if it
modifies a reference’s contents or accesses a file

* Type checking
®el;e2 : t

®ifel:unit ande2: t

16

,, VEersus |

 ;; ends an expression in the top-level of OCaml
* Use it to say: “Give me the value of this expression”
* Not used in the body of a function

 Not needed after each function definition
» Though for now it won’t hurt if used there

e el; e2evaluates el and then e2, and returns e2

let print both (s, t) = print string s; print string t;

"Printed s and t"

* notice no ; at end — it's a separator, not a terminator

17

Grouping Sequences

 If you're not sure about the scoping rules, use begin...end,
or parentheses, to group together statements with

semicolons

let £ ()
begin

X =
end

let x = ref 0

print string "hello";

'x + 1

let x = ref O
let £ () =

(

print string "hello";

x = Ix +1

)

18

Implement a Counter

let counter = ref 0 ;;
val counter : int ref = { contents=0 }

let next () =
counter := !counter + 1; !'counter

val next : unit -> int = <fun>

next ();;
- : int =1

next ();;
— : int = 2

°
14

°
14

19

Hide the Reference

let next =
let counter = ref 0 in
fun () ->
counter := !counter + 1;

val next

next ();;
- : int

next ();;
- : int

unit -> int

I
=

<fun>

'counter

e o
r 7

20

Hide the Reference, Visualized

let next =
contents =
let cnt = ref 0 in — 0
fun () ->
cnt := 'ent + 1; !'ent
let ne:‘ct/=/] a closure
fun () ->

cnt := 'ent + 1; 'ent J

Quiz 2: What is wrong with the counter?

let next =
fun () ->
let counter = ref 0 in
counter := !counter + 1;
!counter

A. It returns a boolean, not an integer

B. It returns the same integer every time

C. It returns a reference to an integer instead of an integer
D. Nothing is wrong

22

Quiz 2: What is wrong with the counter?

let next =
fun () ->
let counter = ref 0 in
counter := !counter + 1;
!counter

A. It returns a boolean, not an integer

B. It returns the same integer every time

C. It returns a reference to an integer instead of an integer
D. Nothing is wrong

23

The Trade-Off Of Side Effects

« Side effects are necessary

* That’s usually why we run software! We want something to
happen that we can observe

* They also make reasoning harder

* Order of evaluation now matters

* No referential transparency

» Calling the same function with the same arguments may produce different
results

 Aliasing may result in hard-to-understand bugs

> If we call a function with refs r1 and r2, it might do strange things if r1 and
r2 are aliases

24

Order of Evaluation

« Consider this example

let y
let £
let w

W,

ref 1;;
z = z+1;;
f (y:=2)

(* ignores first arg *)

'y,

 What is w if £'s arguments are evaluated left to right?

3

« What if they are evaluated right to left?

° 2

25

OCaml Order of Evaluation

* |n OCaml, the order of evaluation is unspecified

* This means that the language doesn’t take a stand, and different
implementations may do different things

* On my Mac, OCaml evaluates right to left
* True for the bytecode interpreter and x86 native code
* Run the previous example and see for yourself!

« Strive to make your programs produce the same answer
regardless of evaluation order

26

Order of Evaluation

List items are evaluated in right to left order

let £ () = Printf.printf "F\t";;
let g () = Printf.printf ”G\t";;
[£ (), g ()]

G F-:unitlist= [(); ()]

g () is called before £ ()

27

Quiz 3: Will w's value differ

If evaluation order is left to right, rather than right to left?

let y = ref 1 in
let £ z = z := 1z+1l; 'z in
let w = (fy) + (f y) in
w

A. True

B. False

28

Quiz 3: Will w's value differ

If evaluation order is left to right, rather than right to left?

let y

let £ z =

let w

W

ref 1 in
z := 1z+1; 'z in
(fy) + (fy) in

A. True
B. False

29

Quiz 4: Will w's value differ

If evaluation order is left to right, rather than right to left?

let y = ref 1 in
let £ z = 2z := 1z+1; 'z in
let w = (fy) + 'y in
W
A. True

B. False

Quiz 4: Will w's value differ

If evaluation order is left to right, rather than right to left?

let y = ref 1 in
let £ z = z := 'z+1; 'z in
let w = (fy) + 'y in
W
left to right: 4
A. True

right to left: 3

B. False

Quiz 5: Which £ is not referentially transparent?

l.e.,, notthecasethatf x = £ y forallx = y

A. let £ z = C. let £ z =

let y = ref z in let y = z in

y =y + z; y+z

'y

D. let £ z = z+1

B. let £ =

let vy = ref 0 in

fun z ->

y :=ly + z; ly

Quiz 5: Which £ is not referentially transparent?

l.e., notthecasethatf x = £ y forallx = y
A. let £ z = C. let £ z =
let y = ref z in let y = z in
y =y + z; y+z
'y
D. let £ z = z+1
B. let £ =
let vy = ref 0 in
fun z ->
y =y + z; ly

This is basically the counter function

33

Structural vs. Physical Equality

e Structural comparison: = and <>
Physical comparison: == and !=
let x =[1;2;3];; lety =[1;2;3];;
e (x=y) (true *) (x<>y) (*false™)
e (x==y)(*false™) (x!=y) (*true™)

Mostly you want to use = and <>
* E.g., the = operator is used for pattern matching

But = is a problem with cyclic data structures

34

Equality of refs themselves

« Refs are compared structurally by their contents,
physically by their addresses

 ref1 =ref1 (* true *)
* ref1 <>ref2 (* true ™)
e ref11=ref 1 (* true *)

letx=ref1inx==x (*true?”)

Mutable fields

 Fields of a record type can be declared as mutable:

type point = {x:int; y:int; mutable c:string};;
type point = { x : int; y : int; mutable c¢ : string;

let p = {x=0; y=0; c="red"};;
val p : point = {x = 0; y = 0, ¢ = "red"}

p.c <- “white”;;
- : unit = ()
p;
p : point = {x = 0; vy = 0; ¢ = "white"}

p.x <-3;;
Error: The record field x is not mutable

}

36

Implementing Refs

» Ref cells are essentially syntactic sugar:

type 'a ref = { mutable contents: 'a }
let ref x = { contents = x }

let (') r = r.contents

let (:=) r newval = r.contents <- newval

« reftype is declared in Pervasives
 ref functions are compiled to equivalents of above

37

Arrays

« Arrays generalize ref cells from a single mutable value to a
sequence of mutable values

let v=1[10.; 1.]1;;
val v : float array = [|0.; 1.]]

v.(0) <- 5.;;
- : unit = ()
v;;

- : float array = [|5.; 1.]]

38

Quiz 6: What does this evaluate to?

let x =] 0; 1 |] in
let w = x in
x.(0) <- 1;

X =]7—=—= W

A. ()

B. true

C. false

D. Type error

39

Quiz 6: What does this evaluate to?

let x = [| O;
let w = x in
x.(0) <- 1;

X =]/=— W

1 |] in

A. ()

B. true — they point to
the same array

C. false

D. Type error

40

Control structures

 Traditional loop structures are useful with imperative
features:

while el do e2 done
for x = el to e2 do e3 done
for x = el downto e2 do e3 done

for i =1 to 5 do
Printf.printf "3%d " 1

done; ;

12345,

41

Hash Table

Hashtbl Module

let h = Hashtbl.create 1331;
Hashtbl.add h "alice" 100;;

Hashtbl.add h "bob" 200;;

Hashtbl.iter (Printf.printf " (%s,%d)\n")

(alice,100)
(bob,200)

h;;

42

https://v2.ocaml.org/api/type_Hashtbl.html
https://v2.ocaml.org/api/type_Hashtbl.html

List.assoc as Map

* An association list is an easy implementation of a map
(aka dictionary)

let d = [("alice", 100); ("bob", 200);
("cathy", 300)]. (* (string * int) 1list ¥*)
List.assoc "alice" d;;
- : int = 100

List.assoc "frank" d4d;;
Exception: Not found.

43

Build a Map Using Functions

let empty v = fun -> 0;;
let update m k v = - fun s->if k=s then v else m s

let m = empty O;;

let m = update m "foo" 100;;
let m = update m "bar" 200;;
let m = update m "baz" 300;;
m "foo";; (* 100 *)

m "bar";; (* 200 ¥*)
let m = update m "foo" 101;;
m "foo";; (* 101 ¥*)

Challenge: change the code to return all the values for a key

44

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: So Far, Only Functional Programming
	Slide 3: Imperative OCaml
	Slide 4: References
	Slide 5: References Usage
	Slide 6: References Usage
	Slide 7: References Usage
	Slide 8: Aliasing
	Slide 9: Quiz 1: What is the value w?
	Slide 10: Quiz 1: What is the value w?
	Slide 11: Quiz 1a: What is the value w?
	Slide 12: Quiz 1a: What is the value w?
	Slide 13: References: Syntax and Semantics
	Slide 14: References: Syntax and Semantics
	Slide 15: References: Syntax and Semantics
	Slide 16: Sequences: Syntax and Semantics
	Slide 17: ;; versus ;
	Slide 18: Grouping Sequences
	Slide 19: Implement a Counter
	Slide 20: Hide the Reference
	Slide 21: Hide the Reference, Visualized
	Slide 22: Quiz 2: What is wrong with the counter?
	Slide 23: Quiz 2: What is wrong with the counter?
	Slide 24: The Trade-Off Of Side Effects
	Slide 25: Order of Evaluation
	Slide 26: OCaml Order of Evaluation
	Slide 27: Order of Evaluation
	Slide 28: Quiz 3: Will w’s value differ
	Slide 29: Quiz 3: Will w’s value differ
	Slide 30: Quiz 4: Will w’s value differ
	Slide 31: Quiz 4: Will w’s value differ
	Slide 32: Quiz 5: Which f is not referentially transparent?
	Slide 33: Quiz 5: Which f is not referentially transparent?
	Slide 34: Structural vs. Physical Equality
	Slide 35: Equality of refs themselves
	Slide 36: Mutable fields
	Slide 37: Implementing Refs
	Slide 38: Arrays
	Slide 39: Quiz 6: What does this evaluate to?
	Slide 40: Quiz 6: What does this evaluate to?
	Slide 41: Control structures
	Slide 42: Hash Table
	Slide 43: List.assoc as Map
	Slide 44: Build a Map Using Functions

