
CMSC 330: Organization of Programming

Languages

OCaml Data Types

1

CMSC330 Fall 2025

Review: Fold

2

let rec fold_left f a l =

 match l with

 [] -> a

 | h::t -> fold_left f (f a h) t

let rec fold_right f l a =

 match l with

 [] -> a

 | h::t -> f h (fold_right f t a)

Review: Fold

3

fold_left (+) 0 [1;2;3]

fold_left (+) 1 [2;3]

fold_left (+) 3 [3]

fold_left (+) 6 []

6

fold_right (+) [1;2;3] 0

1 + (fold_right (+) [2;3] 0)

1 + (2 + (fold_right (+) [3] 0))

1 + (2 + (3 (fold_right (+) [] 0)))

1 + (2 + (3 + 0)) 1 + (2 + 3)

1 + 5

6

4

OCaml Data

• So far, we’ve seen the following kinds of data

• Basic types (int, float, char, string)

• Lists

➢ One kind of data structure

➢ A list is either [] or h::t, deconstructed with pattern matching

• Tuples and Records

➢ Let you collect data together in fixed-size pieces

• Functions

• How can we build other data structures?

• Building everything from lists and tuples is awkward

(User-Defined) Variants

type gen =

 |Int of int

 |Str of string;;

let ls = [Int 10; Str "alice”]

let print_gen lst =

 match lst with

 |Int i->Printf.printf “%d\n” i

 |Str s-> Printf.printf “%d\n” s

List.iter print_gen ls
5

Variants (full definition)

• Syntax

• type t = C1 [of t1] | … | Cn [of tn]

• the Ci are called constructors

• Evaluation

• A constructor Ci is a value if it has no assoc. data

➢ Ci vi is a value if it does

• Destructing a value of type t is by pattern matching

➢ patterns are constructors Ci with data components, if any

• Type Checking

• Ci [vi] : t [if vi has type ti]

6

7

Data Types: Variants with Data

type shape =

 Rect of float * float

 | Circle of float

let area s =

 match s with

 Rect (w, l) -> w *. l

 | Circle r -> r *. r *. 3.14

;;

area (Rect (3.0, 4.0));; (* 12.0 *)

area (Circle 3.0);; (* 28.26 *)

[Rect (3.0, 4.0) ; Circle 3.0]. (* shape list*)

8

Quiz 1

type foo = ((string list) * int) list

A. [("foo", "bar”, 5)]

B. [(["foo", "bar"],6)]

C. [([("foo", "bar")],8)]

D. [(["foo"; "bar"],7)]

Which one of the following could match type foo?

9

Quiz 1

type foo = ((string list) * int) list

A. [("foo", "bar”, 5)] string * string * int) list

B. [(["foo", "bar"],6)]((string*string) list*int) list

C. [([("foo", "bar")],8)] same as B

D. [(["foo"; "bar"],7)] (string list * int) list

Which one of the following could match type foo?

10

Quiz 2: What does this evaluate to?

A. 5

B. 2

C. 5.0

D. Type Error

type num = Int of int | Float of float;;

let aux a =

 match a with

 | Int i -> i

 | Float j -> int_of_float j

;;

aux (Float 5.0);;

11

Quiz 2: What does this evaluate to?

A. 5

B. 2

C. 5.0

D. Type Error

type num = Int of int | Float of float;;

let aux a =

 match a with

 | Int i -> i

 | Float j -> int_of_float j

;;

aux (Float 5.0);;

12

Option Type

• Comparing to Java: None is like null, while

Some i is like an Integer(i) object

type optional_int =

 None

 | Some of int

let divide x y =

 if y != 0 then Some (x/y)

 else None

let string_of_opt o =

 match o with

 Some i -> string_of_int i

 | None -> “nothing”

13

Polymorphic Option Type

type 'a option =

 Some of 'a

| None

let p = opthd [];; (* p = None *)

let q = opthd [1;2];; (* q = Some 1 *)

let r = opthd [“a”];; (* r = Some “a” *)

let opthd l =

 match l with

 [] -> None

 | x::_ -> Some x

14

Quiz 3: What does this evaluate to?

A. 45.5

B. 42.0

C. Some 45.5

D. Error

let foo f = match f with

 None -> 42.0

 | Some n -> n +. 42.0

;;

foo 3.5;;

15

Quiz 3: What does this evaluate to?

A. 45.5

B. 42.0

C. Some 45.5

D. Error

let foo f = match f with

 None -> 42.0

 | Some n -> n +. 42.0

;;

foo 3.5;; foo (Some 3.5)

16

Recursive Data Types: List

type 'a mylist =

 Nil

 | Cons of 'a * 'a mylist

let l = Cons (10, Cons (20, Cons (30, Nil)))

let rec len = function

 Nil -> 0

 | Cons (_, t) -> 1 + (len t)

17

Recursive Data Types: Binary Tree

type 'a tree =

 Leaf

 | Node 'a tree * 'a * 'a tree

let empty = Leaf

let t = Node(Leaf, 100, Node(Leaf,200,Leaf))

let rec sum t =

 match t with

 Leaf -> 0

 | Node(l,v,r)-> sum l + v + sum r

18

OCaml Exceptions

exception My_exception of int

let f n =

 if n > 0 then

 raise (My_exception n)

 else

 raise (Failure "foo")

let bar n =

 try

 f n

 with My_exception n ->

 Printf.printf "Caught %d\n" n

 | Failure s ->

 Printf.printf "Caught %s\n" s

19

OCaml Exceptions: Useful Examples

• failwith s:Raises exception Failure s (s is a string).

• Not_found:Exception raised by library functions if the object does not exist

• invalid_arg s:Raises exception Invalid_argument s

let div x y =

 if y = 0 then failwith "div by 0" else x/y;;

let lst =[(1,"alice");(2,"bob");(3,"cat")];;

let lookup key lst =

 try

 List.assoc key lst

 with

 Not_found -> "key does not exist"

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Review: Fold
	Slide 3: Review: Fold
	Slide 4: OCaml Data
	Slide 5: (User-Defined) Variants
	Slide 6: Variants (full definition)
	Slide 7: Data Types: Variants with Data
	Slide 8: Quiz 1
	Slide 9: Quiz 1
	Slide 10: Quiz 2: What does this evaluate to?
	Slide 11: Quiz 2: What does this evaluate to?
	Slide 12: Option Type
	Slide 13: Polymorphic Option Type
	Slide 14: Quiz 3: What does this evaluate to?
	Slide 15: Quiz 3: What does this evaluate to?
	Slide 16: Recursive Data Types: List
	Slide 17: Recursive Data Types: Binary Tree
	Slide 18: OCaml Exceptions
	Slide 19: OCaml Exceptions: Useful Examples

