CMSC 330: Organization of Programming
Languages

OCaml Data Types

CMSC330 Fall 2025

Review: Fold

let rec fold left £f a l =
match 1 with
[1 -> a
| h::t -> fold left £ (£ a h) t

let rec fold right £ 1 a =
match 1 with
[1 -> a
| h::t -> £ h (fold right £ t a)

Review: Fold

fold left
fold left
fold left
fold left
6

(+)
(+)
(+)
(+)

0
1
3
6

[1;2;3]
[2;3]
[3]

[]

fold right (+)

OR KRB RR

+

.l.
.l.
+
.|.

[1;2;3] O
(fold right (+)

[2;3] 0)

(2 + (fold right (+) [3] 0))
(2 + (3 (fold right (+) [] 0)))
(2 + (3 +0)) 1+ (2 + 3)

5

OCaml Data

So far, we've seen the following kinds of data
* Basic types (int, float, char, string)
* Lists

» One kind of data structure
> A list is either [] or h::t, deconstructed with pattern matching

* Tuples and Records
> Let you collect data together in fixed-size pieces

 Functions

How can we build other data structures?
 Building everything from lists and tuples is awkward

(User-Defined) Variants

type gen =
| Int of int
| Str of string;;

let 1s = [Int 10; Str "alice”]

let print gen 1lst =
match lst with
| Int i->Printf.printf “%d\n” i
|Str s-> Printf.printf “%d\n” s

List.iter print gen 1s

Variants (full definition)

Syntax

etype t = C1 [of t1] | .. | Cn [of tn
* the ci are called constructors

Evaluation

* A constructor Ci is a value if it has no assoc. data
> Ci viis a value if it does

* Destructing a value of type t is by pattern matching
» patterns are constructors Cci with data components, if any
Type Checking

e Ci [vi] : t|if vi hastype ti

Data Types: Variants with Data

type shape =
Rect of float * float
| Circle of float

let area s =
match s with
Rect (w, 1) -> w *., 1
*

| Circle r -> r *. r *, 3.14

area (Rect (3.0, 4.0));; (* 12.0 *)
area (Circle 3.0);; (* 28.26 *)

[Rect (3.0, 4.0) ; Circle 3.0]. (* shape list¥*)

Quiz 1

type foo = ((string list) * int) 1list

Which one of the following could match type £foo?

[(" foo" , "barll , 5)]

[([Hfoo'l , HbarH] , 6)]
[([("foo", "bar")],8)]
[([Hfoo'l ; HbarH] "7)]

Quiz 1

type foo = ((string list) * int) 1list

Which one of the following could match type £foo?

[("fo0", "bar”, 5)] string * string * int) list
[(["foo", "bar"],6)] ((string*string) list*int) list
[([("fo0", "bar")],8)] same as B

[(["foo"; "bar"],7)] (string list * int) list

Quiz 2: What does this evaluate to?

type num = Int of int | Float of float;;

let aux a =
match a with
| Int 1 -> 1
| Float j -> int of float j

aux (Float 5.0);;

a. 5
B. 2
c. 5.0

p. Type Error

10

Quiz 2: What does this evaluate to?

type num = Int of int | Float of float;;

let aux a =
match a with
| Int 1 -> 1
| Float j -> int of float j

aux (Float 5.0);;

a. 5
B. 2
c. 5.0

p. Type Error

11

Option Type

let divide x y =
if y !'= 0 then Some (x/y)
else None

type optional int =
None
| Some of int let string of opt o =
match o with
Some i -> string of int i
| None -> “nothing”

Comparing to Java: None is like null, while
Some / Is like an Integer (i) object

12

Polymorphic Option Type

type 'a option =
Some of 'a

let opthd 1 =
match 1 with

| None [] -> None
| x::_ -> Some x
let p = opthd [];: (* p = None *)
let g = opthd [1;2];; (* q = Some 1 ¥*)
let r = opthd [“a”];; (* r = Some “a” ¥*)

13

Quiz 3: What does this evaluate to?

let foo £ = match f with
None -> 42.0
| Some n -> n +. 42.0

foo 3.5;;

a. 45.5
. 42.0
c. Some 45.5

pD. Error

Quiz 3: What does this evaluate to?

let foo £ = match £ with
None -> 42.0
| Some n -> n +. 42.0

foo3-5;; foo (Some 3.5)

a. 45.5
. 42.0
c. Some 45.5

p. Error

Recursive Data Types: List

type 'a mylist =
Nil
| Cons of 'a * 'a mylist

let 1 = Cons (10, Cons (20, Cons (30, Nil)))
let rec len = function

Nil -> O
| Cons (_, t) -> 1 + (len t)

16

Recursive Data Types: Binary Tree

type 'a tree =
Leaf
| Node 'a tree * 'a * 'a tree

let empty = Leaf
let t = Node(Leaf, 100, Node (Leaf,200,Leaf))

let rec sum t =
match t with
Leaf -> 0
| Node(l,v,r)-> sum 1 + v + sum r

17

OCaml Exceptions

exception My exception of int
let £ n =
if n > 0 then
raise (My exception n)
else
raise (Failure "foo")
let bar n =
try
fn
with My exception n ->
Printf.printf "Caught %d\n" n
| Failure s ->
Printf.printf "Caught %s\n" s

18

OCaml Exceptions: Useful Examples

« failwith s:Raises exception Failure s (s is a string).

 Not found:Exception raised by library functions if the object does not exist
 invalid arg s:Raises exception Invalid_argument s

let div x y =
if y = 0 then failwith "div by 0" else x/y;;
let 1lst =[(1,"alice"); (2,"bob"); (3,"cat")];;

let lookup key 1lst =
try

List.assoc key lst
with

Not found -> "key does not exist"

19

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Review: Fold
	Slide 3: Review: Fold
	Slide 4: OCaml Data
	Slide 5: (User-Defined) Variants
	Slide 6: Variants (full definition)
	Slide 7: Data Types: Variants with Data
	Slide 8: Quiz 1
	Slide 9: Quiz 1
	Slide 10: Quiz 2: What does this evaluate to?
	Slide 11: Quiz 2: What does this evaluate to?
	Slide 12: Option Type
	Slide 13: Polymorphic Option Type
	Slide 14: Quiz 3: What does this evaluate to?
	Slide 15: Quiz 3: What does this evaluate to?
	Slide 16: Recursive Data Types: List
	Slide 17: Recursive Data Types: Binary Tree
	Slide 18: OCaml Exceptions
	Slide 19: OCaml Exceptions: Useful Examples

