CMSC 330
Organization of Programming Languages

OCaml
Higher Order Functions
Map & Fold

CMSC330 Fall 2025 1

Passing Functions as Arguments

You can pass functions as arguments

let plus3 x = x + 3 (* int -> int ¥*)

let twice £ z = £ (f z)
(* ('a->'a) -> 'a => 'a *)

twice plus3 5 = 11

The Map Function

map is a higher order function

map £ [v1; v2; ..; vn]
= [£f v, £ v2; ..; £ vn]

let add one x = x + 1

let negate x = -x

[2; 3; 4]
[-9; 5; 0]

map add one [1; 2; 3]
map negate [9; -5; 0]

How can we implement Map?

let rec addlall 1 =
match 1 with
[1 -> I1
| h::t ->
(add one h) :: addlall t

let rec negall 1
match 1 with
[1 -> T[]

| h::t ->
(neg h) ::

negall t

let rec map £ 1
match 1 with

[1 -> [1]

| h::t -> (£ h)::(map £ t)

Implementing map

let rec map £ 1 =
match 1 with
[1 -> []
| h::t -> (£ h):: (map £ t)

» What is the type of map?

\)
Y H_J

f 1

Implementing map

let rec map £ 1 =
match 1 with
[1 -> T[]
| h::t -> (f h)::(map £ t)

» What is the type of map?

{va -> lb} -> 'a list -> 'b list
Y Y

f 1

map, as a cartoon

map cook [E:SRATEE N Q\]

[g) Ql “) M:]

map is included in the standard List module, i.e., as List.map

Quiz 4: What does this evaluate to?

map (fun x -> x * 4) [1;2;3]

. [1.0; 2.0; 3.0]
.[4.0;, 8.0; 12.0]

Error
. [4; 8; 12]

Do w

Quiz 4: What does this evaluate to?

map (fun x -> x * 4) [1;2;3]

A.[1.0; 2.0; 3.0]
B. [4.0; 8.0; 12.0]

C. Error
D. [4; 8; 12]

Quiz 5: Which function to use?

map ?°?7? [1;

o Q w w

fun
fun
fun

fun

0; 3]

I T

-> true

-> X

-> x I=

-> X

[true; false;

0
0
(x '= 0)

true]

10

Quiz 5: Which function to use?

map ?°?7? [1;

O QW P

fun
fun
fun

fun

0; 3] =
X —-> true
X —-> X =
Xx > x |
X —-> X =

[true;

false;

true]

11

fold

Two Recursive Functions

Sum a list of ints Concatenate a list of strings
let rec sum 1 = let rec concat 1 =
match 1 with match 1 with
[1 -> 0 [1 -> "
| h::t -=> h + (sum t) | h::t -> h 4 (concat t)
sum [1;2;3;4];; # Concat ["a";"b";"c"];;

- : int = 10 - : string = "abc"

13

Notice Anything Similar?

Sum a list of ints Concatenate a list of strings
iet rec sum i = let rec concat 1 =
match 1 with match 1 with
[] _> 0 [] _> mww

| h::t -> (+) h (sum t) | h::t -> () h (concat t)

14

The fold Function

Sum a list of ints Concatenate a list of strings:
let rec sum lst = let rec concat 1lst =
match 1 with match 1 with
[1 -> 0 [1 > "
| h::t -> (+) h (sum t) | h::t -> (*) h (concat t)

let rec fold £ a 1 =
match 1 with
[1 -> a
| h::t -> £ h (foldr £ a t)

let sum 1 = fold (+) 0 1lst
let concat 1 = fold () "" 1lst

15

What does fold do?

let rec fold £ a 1 =
match 1 with
[1 -> a
| h::t -> fold £ (£ a h) t

let add a x = a + x

fold add 0 [1; 2; 3] -

fold add (add 0 1) [2; 3] -

fold add 1 [2; 3] -

fold add (add 1 2) [3] -

fold add 3 [3] -

fold add (add 3 3) [] -

fold add 6 [1 - We just built the sum function!

6

16

Using Fold to Build Reverse

let rec fold £ a 1 =
match 1 with
[] -> a
| h::t -> fold £ (£ a h) t

» Let's build the reverse function with fold!
let prepend a x = x::a
fold prepend [] [1; 2; 3; 4] -
fold prepend [1] [2; 3; 4] -
fold prepend [2; 1] [3; 4] -
fold prepend [3; 2; 1] [4] -
fold prepend [4; 3; 2; 1] [] -

[4;

3; 2;

1]

17

] let rec fold £f a 1 =
List.fold left match 1 with

[1 -> a
| h::t -> fold £ (£ a h) t

» fold £ \"4 [v1; v2; ..; vn]
= fold £ (f v v1) [v2; ..; vn]
= fold £ (f (f v vl) v2) [..; vn]

= f (f (£f (£f v vl) v2) ..) vn

e.g., fold add 0 [1;2;3;4] =
add (add (add (add 0 1) 2) 3) 4 = 10

18

i : let rec foldr £ a 1 =
List.fold_right e 1 ien

[l -> a
| h::t -> £f h (foldr £ a t)

fold right £ [vI; v2; ..; vn] v
f vl (£f v2 (.(f vn v)..))

fold right add [1;2;3;4] 0 =
add 1 (add 2 (add 3 (add 4 0))) = 10

19

Quiz 6: What does this evaluate to?

let £f xy = (1f x > y then x else y) in
fold £ 0 [3;4;2]

true

o QW P

20

Quiz 6: What does this evaluate to?

let £f xy = 1if x > y then x else y in
fold £ 0 [3;4;2]

true

o QW P

21

Quiz 7: What does this evaluate to?

fold (fun a y -> a-y) 0 [3;4;2]

o Q w P
|
=

22

Quiz 7: What does this evaluate to?

fold (fun a y -> a-y) 0 [3;4;2]

O QW »
|
=

23

Type of fold_left, fold right

let rec fold left £ a 1 =
match 1 with
[] -> a
| h::t -> fold left £ (£ a h) t

24

Type of fold_left, fold right

let rec fold left £ a 1 =
match 1 with
[] -> a
| h::t -> fold left £ (£ a h) t

('a ->

\

'b -> 'a) -> 'a -> 'b list ->

v / ~
f a 1

'a

25

Type of fold_left, fold right

let rec fold left £ a 1 =
match 1 with
[] -> a
| h::t -> fold left £ (£ a h) t

('a -=> 'b -> 'a) -> 'a -> 'b list ->
\ Y / -’ —
£ a 1l
let rec fold right £ 1 a =
match 1 with
[] -> a
| h::t -> £ h (fold right £ t a)

('b -> 'a -> 'a) -> 'b list -> 'a ->
\ v J | U | ‘—'—’
f 1 a

'a

'a

26

Summary: Left-to-right vs. right-to-left

fold left £ v [v1; v2; ..; vn]
£f (£ (£f (£f v v1l) v2) .) vn

fold right £ [vi; v2; .., vn] v =
f vl (f v2(. (f vn v) ..))

fold left (fun xy > x —-y) 0 [1;2;3] = -6
since ((0-1)-2)-3) = -6

fold right [1;2;3] (fun xy -> x —-y) 0 = 2
since 1-(2-(3-0)) = 2

27

When to use one or the other?

» Many problems lend themselves to fold right

» But it does present a performance disadvantage

* The recursion builds of a deep stack: One stack frame for each
recursive call of fold_right

» An optimization called tail recursion permits optimizing
fold left so that it uses no stack at all

* \We will see how this works in a later lecture!

28

Fold Example 1: Product of an int list

let mul xy=x * vy;;
let 1st = [1; 2; 3; 4; 5];;

fold mul 1 1lst Wrong accumulator
- : int = 120

fold mul © 1st;;
- ¢ int = 0

29

Example 2: Count elements of a list satisfying a
condition

let countif p 1 =

fold (fun counter element ->
if p element then counter+l
else counter) 0 1 ;;

countif (fun x -> x > 0) [30;-1,;45;100;01;;

- : int = 3

30

Fold Example 3: Collect even numbers in the list

let £ acc y = if (y mod 2) = 0 then y::acc
else acc;;

fold £ [] [1;2;3;4;5;6];;

- : int list = [6; 4; 2]

31

Fold Example 4: Find the maximum from a list

let maxList 1lst =
match 1lst with
[]->failwith "empty list"
|h::t-> fold max h t

(*

maxList [3;10;5]

fold max 3 [10:5]

fold max (max 3 10) [5]
fold max (max 10 5) []
fold max 10 []

10

*)

maxList [3;10;5];;
- : int = 10

32

Combining map and fold

ldea: map a list to another list, and then fold over it to
compute the final result

* Basis of the famous “map/reduce” framework from Google, since
these operations can be parallelized

let countone 1 =
fold (fun a h -> if h=l1 then a+l else a) 0 1

let countones ss =
let counts = map countone ss in
fold (fun a ¢ -> a+c) 0 counts

1N

countones [[1;0;1]; [0,;0];, [1;1]]
countones [[1;0]1; []1; [0;0]; [1]]

33

Sum of sublists

Given a list of int lists, compute the sum of each int list, and return
them as list.

let sumList = map (fold (+) 0);;

For example:
sumList [[1;2;3];[4];[5:;6;7]]
- : int list = [6; 4; 18]

34

	Slide 1: CMSC 330 Organization of Programming Languages
	Slide 2: Passing Functions as Arguments
	Slide 3: The Map Function
	Slide 4: How can we implement Map?
	Slide 5: Implementing map
	Slide 6: Implementing map
	Slide 7: map, as a cartoon
	Slide 8: Quiz 4: What does this evaluate to?
	Slide 9: Quiz 4: What does this evaluate to?
	Slide 10: Quiz 5: Which function to use?
	Slide 11: Quiz 5: Which function to use?
	Slide 12: fold
	Slide 13: Two Recursive Functions
	Slide 14: Notice Anything Similar?
	Slide 15: The fold Function
	Slide 16: What does fold do?
	Slide 17: Using Fold to Build Reverse
	Slide 18: List.fold_left
	Slide 19: List.fold_right
	Slide 20: Quiz 6: What does this evaluate to?
	Slide 21: Quiz 6: What does this evaluate to?
	Slide 22: Quiz 7: What does this evaluate to?
	Slide 23: Quiz 7: What does this evaluate to?
	Slide 24: Type of fold_left, fold_right
	Slide 25: Type of fold_left, fold_right
	Slide 26: Type of fold_left, fold_right
	Slide 27: Summary: Left-to-right vs. right-to-left
	Slide 28: When to use one or the other?
	Slide 29: Fold Example 1: Product of an int list
	Slide 30: Example 2: Count elements of a list satisfying a condition
	Slide 31: Fold Example 3: Collect even numbers in the list
	Slide 32: Fold Example 4: Find the maximum from a list
	Slide 33: Combining map and fold
	Slide 34: Sum of sublists

