
CMSC 330: Organization of Programming

Languages

Tail Recursion

CMSC330 Spring 2026

Factorial

fact n =
n * fact (n-1) n>0

1 n=0

let rec fact n =

 if n = 0 then 1

 else n * fact (n-1)

fact 4 = 24

Factorial

fact 3 = 3 * fact 2

 = 3 * 2 * fact 1

 = 3 * 2 * 1 * fact 0

 = 3 * 2 * 1 * 1

 = 3 * 2 * 1

 = 3 * 2

 = 6

Stack

fact 0 1

fact 1 1 1 * fact 0

fact 2 2 2 * fact 1

fact 3 3 3 * fact 2

fact n =
n * fact (n-1) n>0

1 n=0

Stack Overflow

fact 1000000

Yet Another Factorial

aux x a =

fact n = aux n 1

aux (x-1) x*a x>0

a x=0

let fact n =

 let rec aux x a =

 if x = 0 then a

 else aux (x-1) x*a

 in

 aux n 1

Stack

6

1,6 aux 1 6

2,3 aux 2 3

fact 3 3,1 aux 3 1

Yet Another Factorial

fact 3 = aux 3 1

 = aux 2 3

 = aux 1 6

 = 6

aux x a =

fact n = aux n 1

aux (x-1) x*a x>0

a x=0

Tail Recursion

• Whenever a function’s result is completely computed by

its recursive call, it is called tail recursive

– Its “tail” – the last thing it does – is recursive

• Tail recursive functions can be implemented without

requiring a stack frame for each call

– No intermediate variables need to be saved, so the compiler

overwrites them

• Typical pattern is to use an accumulator to build up the

result, and return it in the base case

Compare fact and aux

final result is the result of the recursive call

Waits for recursive call’s result to compute final result

let rec fact n =

 if n = 0 then 1

 else n * fact (n-1)

let fact n =

 let rec aux x acc =

 if x = 1 then acc

 else aux (x-1) (acc*x)

 in

 aux n 1

let sumlist l =

 let rec helper l a =

 match l with

 [] -> a 0

 | (x::xs) -> helper xs (x+a)

 in

helper l 0

Exercise: Finish Tail-recursive Version

let rec sumlist l =

 match l with

 [] -> 0

 | (x::xs) -> (sumlist xs) + x

Tail-recursive version:

A Tail Recursive map

let map f l =

 let rec helper l a =

 match l with

 [] -> a

 | h::t -> helper t ((f h)::a)

 in rev (helper l [])

Could instead change (f h)::a to be a@(f h)

Q: Why is the above implementation a better choice?
A: O(n) running time, not O(n2) (where n is length of list)

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Factorial
	Slide 3: Factorial
	Slide 4: Stack Overflow
	Slide 5: Yet Another Factorial
	Slide 6: Yet Another Factorial
	Slide 7: Tail Recursion
	Slide 8: Compare fact and aux
	Slide 9: Exercise: Finish Tail-recursive Version
	Slide 18: A Tail Recursive map

