CMSC 330: Organization of Programming
Languages

Tail Recursion

CMSC330 Spring 2026

Factorial

1 n=

fact n =:{ n * fact (n-1) n>0

let rec fact n =
if n = 0 then 1
else n * fact (n-1)

fact 4 = 24

Factorial

1 n=
fact n =:{ n * fact (n-1) n>0
fact 3 = 3 * fact 2

= 3 * 2 * fact 1 fact 0
= 3 *x 2 * 1 * fact O fact 1
=3 * 2 * 1 * fact 2
=3 * 2 * 1 fact 3
= 3 * 2

6

Stack

1 * fact O
2 * fact 1
3 * fact 2

Stack Overflow

let rec fact n = 1f n = @ then 1 else n % fact (n-1);;
val fact : int -> int = <fun>
fact 1000000

Stack overflow during evaluation [(looping recursion?).

Yet Another Factorial

a X=
aux x a =1 aux (x-1) x*a x>0
fact n = aux n 1l
let fact n =

let rec aux x a
if x = 0 then a

else aux (x-1) x*a
in

aux n 1

fact 3

Stack

aux 1 6
aux 2 3

aux 3 1

Yet Another Factorial

_|a X=
aux X a =1 gux (x-1) x*a x>0
fact n = aux n 1l
fact 3 = aux 3 1

= aux 2 3
= aux 1 6

6

Tail Recursion

« Whenever a function’s result is completely computed by
its recursive call, it is called tail recursive

— Its “tail” — the last thing it does — is recursive

 Tail recursive functions can be implemented without
requiring a stack frame for each call

— No intermediate variables need to be saved, so the compiler
overwrites them

« Typical pattern is to use an accumulator to build up the
result, and return it in the base case

Compare fact and aux

let rec fact n =
if n=0 then 1
else n * fact (n-1)

Waits for recursive call’s result to compute final result

let fact n =
let rec aux x acc =
if x = 1 then acc
else aux (x-1) (acc*x)
in
aux n 1

final result is the result of the recursive call

Exercise: Finish Tail-recursive Version

let rec sumlist 1 =
match 1 with
[] >0
| (x::xs) -> (sumlist xs) + x

Tail-recursive version:

let sumlist 1 =
let rec helper 1 a =
match 1 with
[] -> a
| (x::xs) -> helper xs (x+a)
in
helper 1 0

A Tail Recursive map

let map £ 1 =
let rec helper 1 a =
match 1 with
[] > a
| h::t -> helper t ((f h)::a)
in rev (helper 1 [])

Could instead change (£ h)::a tobe a@(f h)

Q: Why is the above implementation a better choice?
A: O (n) running time, not O (n?) (where n is length of list)

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Factorial
	Slide 3: Factorial
	Slide 4: Stack Overflow
	Slide 5: Yet Another Factorial
	Slide 6: Yet Another Factorial
	Slide 7: Tail Recursion
	Slide 8: Compare fact and aux
	Slide 9: Exercise: Finish Tail-recursive Version
	Slide 18: A Tail Recursive map

