CMSC 330: Organization of Programming
Languages

Lets, Tuples, Records

CMSC330 Spring 2025

Let Expressions

e Syntax
- let x
— x IS a bound variable
— el is the binding expression
— e21s the body expression

el in e2

« let expressions bind /ocal variables
— Different from let definitions, which are at the top-level

Let Expressions

« Syntax

— let x = el in e2

 Evaluation

— el =v1
— e2{v1/x}

let z = 344 in 3*z

21

Let Expressions

¢ Syntax

— let x = el in e2

* Type checking
—Ifel: t1and
— If assuming x : t1impliese2: t
— Then (let x = el in e2): t

Example
What is the type of let z = 3+4 in 3*z ?
e 344 . int
« Assuming z : int, we have 3*z : int
« Sothetypeoflet z = 3+4 in 3*z isint

Let Definitions vs. Let Expressions

* At the top-level, we write
—let x = e;; (*noin e2 part™)
— This is called a let definition, not a let expression
« Because it doesn't, itself, evaluate to anything

« Omitting in means “from now on”:
let pi = 3.14;;
(* pi is now bound in the rest of the top-level scope *)

Let Expressions: Scope

e Inlet x = el in e2, var xis not visible outside of e2

let pi = 3.14 inpi *. 3.0 *. 3.0;;
print float pi;; \

_ / bind pi (only) in body of 1et
error: pi not bound (whichispi *. 3.0 *. 3.0)

{
float pi = 3.14;

pi * 3.0 * 3.0;
}
pi; /* pi unbound! */

Examples — Scope of Let bindings

x;; (*Unbound value x *)

let x

1 in x + 1;; (*2%)

let x

x in x + 1;; (¥ Unbound value x *)

(let x =1 in x + 1);; =x;;(" Unbound value x *)

e letx=4in(letx=x+1inx);; (57

Nested Let Expressions

let res =
(let area =
(let pi = 3.14 in
let r = 3.0 in
pi *. r * r) in
area /. 2.0);;

Similar scoping possibilities C and Java

float res;
{ £float area;

{ float pi = 3.14
float r = 3.0;
area = pi * r * r;

}

res = area / 2.0;

Let Expressions in Functions

* You can use let inside of functions for local vars

let area d =
let pi = 3.14 in
let r=d /. 2.0 in
pi *. r *. r

Shadowing Names

- Shadowing is rebinding a name in an inner scope to have

a different meaning
— May or may not be allowed by the language

C

{

int i;

char *

void f(float i) {

= NULL;

let x = 10 in
let z =
let x = 20 in
X*2 1in
x+z. (* 50 *)

10

Shadowing, by the Semantics

« What if e2is also a 1et for x ?
— Substitution will stop at the e2 of a shadowing x

Example
let x = 3+4 in let x = 3*x in x+1
- let x = 7 in let x = 3*x in x+1
- let x = 3*7 in x+1
- let x = 21 in x4l Will not be substituted,
- 21+1 . .
_ 95 since it is shadowed
by the inner let

Quiz 1: What does this evaluate to?

let x = 2 in

let y = x + x 1in
y * x

A. 4

B. 6

C. 8

D. Error

12

Quiz 1: What does this evaluate to?

let x = 2 in

let y = x + x in
y * x

A. 4

B. 6

C. 8

D. Error

13

Quiz 2: What does this evaluate to?

le = 5 in

X

Nt

X
3

. true
. false

14

Quiz 2: What does this evaluate to?

1
X

et = 2 in

X
3

o Q0w »

\

. true

. false

This expression is
checking whether
x IS equal to 3

15

Quiz 3: What does this evaluate to?

3 in
y+2 in
6 in

let y
let x
let y
X+y

.11
.13
. 14

o Q w Pp

Quiz 3: What does this evaluate to?

3 in
y+2 in
6 in

let y
let x
let y
X+y

.11
.13
. 14

o Q w Pp

Tuples

» Constructed using (e1, .., en)

» Deconstructed using pattern matching
— Patterns involve parens and commas, e.g., (p1, p2, ..)

e Tuples are similar to C structs
— But without field labels
— Allocated on the heap

« Tuples can be heterogenous

— Unlike lists, which must be homogenous
- (1, ["stringl";"string2"]) is a valid tuple

18

Tuple Types

* Tuple types use * to separate components
— Type joins types of its components

 Examples
- (1, 2) :
- (1, "string", 3.5) :
- (1, ["a"; "b"1, 'c') :
- [(1,2)] :
- [(1, 2); (3, 4)] :
- [(1,2); (1,2,3)] :

19

Tuple Types

* Tuple types use * to separate components
— Type joins types of its components

 Examples

B (11 2)

- (1, "string",

_ (1, ["a"’. "b"] ,

- [(1,2)]
- [(1/ 2);
B [(1/2);

(3, 4)]
(1,2,3)]

3.5)

lcl)

int * int

int * string * float
int * string list * char
(int * int) 1list

(int * int) list

error

Because the first list element has
type int * int, but the second has
type int * int * int — list elements
must all be of the same type

20

Pattern Matching Tuples

let plus3 t =
match t with
(x, v, z2) >x+y + z;;
plus3 : int*int*int -> int = <fun>

let plus3’ (x, y, z2) =x +y + z;;
plusThree’ : int*int*int -> int = <fun>

21

Tuples Are A Fixed Size

 This OCaml definition

— let foo x = match x with
(a, b) > a + Db
| (a, b, ¢) -=>a + b + ¢

has a type error. Why?

« Tuples of different size have different types
— (a, b) has type: 'a * 'b
— (a, b, ¢c) has type: 'a * 'b * 'c

22

Quiz 4: What does this evaluate to?

let get a b = (a+b,0) in
get 1 2

Quiz 4: What does this evaluate to?

let get a b = (a+b,0) in
get 1 2

A. (3,0)

B. (2,0)
C.3

D. type error

Quiz 5: What does this evaluate to?

let get (a,b) y = a+y in
get (2,1) 1

A. 3
B. type error
C. 2
D. 1

25

Quiz 5: What does this evaluate to?

let get (a,b) y = a+y in
get (2,1) 1

A. 3
B. type error
C. 2
D. 1

26

CMSC 330
Organization of Programming Languages

OCaml
Higher Order Functions

CMSC330 Fall 2025

27

Anonymous Functions

 Use fun to make a function with no name

Parameter Body
\\\\\\\\Es (in which parameter x
(fun x -> x + 3) 5 is bound)

fun x —>|x + 3

I
00

28

Anonymous Functions

e Syntax
— fun x1 .. xn -> e
 Evaluation

— An anonymous function is an expression
— In fact, it is a value.

» Type checking
— (fun x1..xn -> e):(tl ->..-> tn -> u)

when e: u under assumptions x1: t1, .., xn: tn.
* (Samerule as let £ x1 .. xn = e)

29

Quiz 1: What does this evaluate to?

let vy = (fun x -> x+1) 2 in
(fun z -> z-1) y

. Error
.2

.1
. 0

O Qw >

30

Quiz 1: What does this evaluate to?

let vy = (fun x -> x+1) 2 in
(fun z -> z-1) y

. Error
.2

.1
. 0

O Q w >

31

Quiz 2: What is this expression’s type ?

(fun x vy -> x) 2 3

. Type error

. int

.int -> int -> int
.a -> b ->'a

OQ w >

32

Quiz 2: What is this expression’s type ?

(fun x vy -> x) 2 3

. Type error

. 1nt

.int -> int -> int
.a -> b ->'a

OQ w >

33

Functions and Binding

« Functions are first-class, so you can bind them to other
names as you like

34

Example Shorthands

* let for functions is a syntactic shorthand
let £ x = body is semantically equivalent to
let £ = fun x -> body

e Jet next x = x + 1
— Shortfor let next = fun x -> x + 1

e let plus x y =x +y
— Shortfor let plus = fun x y -> x + y

35

Quiz 3: What does this evaluate to?

let £ = fun x -> 0 in

let g = £ in

let h = fun y -> g (y+1) in
h 1

36

Quiz 3: What does this evaluate to?

let £ = fun x -> 0 in
let g = £ in

let h = fun y -> g (y+1)
h 1

37

Nested Functions

(* Filter the odd numbers from a list ¥*)

let filter 1lst =
let rec aux 1 =
match 1 with

| [1 -> [l

|lh::t-> if h mod 2 <> 0 then h::aux t

else aux t
in

aux lst

filter [1;2;3;4;5;6]

(* int list =

[1; 3; 5] *)

38

Passing Functions as Arguments

You can pass functions as arguments

let plus3 x = x + 3 (* int -> int ¥*)

let twice £ z = £ (f z)
(* ('a->'a) -> 'a => 'a *)

twice plus3 5 11

39

Records

« Records: identify elements by name

— Elements of a tuple are identified by position

« Define a record type before defining record values

type date = { month: string; day: int; year: int }

Define a record value

let today = { day=16; year=2017; month=“f"“*“eb” };;

today : date = { day=16; year=2017; month=“feb” };;

40

Destructing Records

{ month: string; day: int; year: int }
{ day=16; year=2017; month="“feb” };;

type date
let today

* Access by field name or pattern matching

today .month;; (* feb *)

let { year } = today in (* binds year to 2017 *)
let { month= ; day=d } = today in

41

Quiz 6: What is the type of shift?

type point = {x:int; y:int}
let shift { x =px } = [px]::[]

. point -> int 1list
. int -> int 1list
. point -> point 1list

o Q w »

. point -> int list list

42

Quiz 6: What is the type of shift?

type point = {x:int; y:int}
let shift { x =px } = [px]::[]

. point -> int 1list
. int -> int 1list
. point -> point 1list

o Q w »

. point -> int list list

43

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Let Expressions
	Slide 3: Let Expressions
	Slide 4: Let Expressions
	Slide 5: Let Definitions vs. Let Expressions
	Slide 6: Let Expressions: Scope
	Slide 7: Examples – Scope of Let bindings
	Slide 8: Nested Let Expressions
	Slide 9: Let Expressions in Functions
	Slide 10: Shadowing Names
	Slide 11: Shadowing, by the Semantics
	Slide 12: Quiz 1: What does this evaluate to?
	Slide 13: Quiz 1: What does this evaluate to?
	Slide 14: Quiz 2: What does this evaluate to?
	Slide 15: Quiz 2: What does this evaluate to?
	Slide 16: Quiz 3: What does this evaluate to?
	Slide 17: Quiz 3: What does this evaluate to?
	Slide 18: Tuples
	Slide 19: Tuple Types
	Slide 20: Tuple Types
	Slide 21: Pattern Matching Tuples
	Slide 22: Tuples Are A Fixed Size
	Slide 23: Quiz 4: What does this evaluate to?
	Slide 24: Quiz 4: What does this evaluate to?
	Slide 25: Quiz 5: What does this evaluate to?
	Slide 26: Quiz 5: What does this evaluate to?
	Slide 27: CMSC 330 Organization of Programming Languages
	Slide 28: Anonymous Functions
	Slide 29: Anonymous Functions
	Slide 30: Quiz 1: What does this evaluate to?
	Slide 31: Quiz 1: What does this evaluate to?
	Slide 32: Quiz 2: What is this expression’s type ?
	Slide 33: Quiz 2: What is this expression’s type ?
	Slide 34: Functions and Binding
	Slide 35: Example Shorthands
	Slide 36: Quiz 3: What does this evaluate to?
	Slide 37: Quiz 3: What does this evaluate to?
	Slide 38: Nested Functions
	Slide 39: Passing Functions as Arguments
	Slide 40: Records
	Slide 41: Destructing Records
	Slide 42: Quiz 6: What is the type of shift?
	Slide 43: Quiz 6: What is the type of shift?

