
CMSC 330:
Organization of Programming Languages

Map & Fold

Spring 2026

1

The Map Function
• map is a higher order function

2

map f [v1; v2; …; vn] = [f v1; f v2; …; f vn]

map cook =

Implementing map

let rec add1all l =

 match l with

 [] -> []

 | h::t ->

 (add_one h):: add1all t

let rec negall l =

 match l with

 [] -> []

 | h::t ->

 (neg h):: negall t

3

let rec map f l =

 match l with

 [] -> []

 | h::t -> (f h)::(map f t)

Implementing map

• What is the type of map?

4

() -> ->

f l

let rec map f l =

 match l with

 [] -> []

 | h::t -> (f h)::(map f t)

Implementing map

• What is the type of map?

5

('a -> 'b) -> 'a list -> 'b list

f l

let rec map f l =

 match l with

 [] -> []

 | h::t -> (f h)::(map f t)

A. [1.0; 2.0; 3.0]

B. [4.0; 8.0; 12.0]

C. Error

D. [4; 8; 12]

6

Quiz: What does this evaluate to?

map (fun x -> x * 4) [1;2;3]

7

map (fun x -> x * 4) [1;2;3]

Quiz: What does this evaluate to?

A. [1.0; 2.0; 3.0]

B. [4.0; 8.0; 12.0]

C. Error

D. [4; 8; 12]

Fold

• Takes a list and collapses it into a single value by
repeatedly applying a function.

 fold_left f init [x1; x2; x3]

Means

 f (f (f init x1) x2) x3

8

Two Recursive Functions

let rec sum l =

 match l with

 [] -> 0

 | h::t -> h + (sum t)

let rec concat l =

 match l with

 [] -> ""

 | h::t -> h ^ (concat t)

Concatenate a list of stringsSum a list of ints

sum [1;2;3;4];;

- : int = 10

concat ["a";"b";"c"];;

- : string = "abc"

9

let rec concat l =

 match l with

 [] -> ""

 | h::t -> h ^ (concat t)

let rec sum l =

 match l with

 [] -> 0

 | h::t -> h + (sum t)

Notice Anything Similar?

let rec sum l =

 match l with

 [] -> 0

 | h::t -> (+) h (sum t)

Concatenate a list of stringsSum a list of ints

10

let rec concat l =

 match l with

 [] -> ""

 | h::t -> (^) h (concat t)

The fold Function

let rec sum lst =

 match l with

 [] -> 0

 | h::t -> (+) h (sum t)

let rec concat lst =

 match l with

 [] -> ""

 | h::t -> (^) h (concat t)

Concatenate a list of strings:Sum a list of ints

11

let rec fold f a l =

 match l with

 [] -> a

 | h::t -> f h (foldr f a t)

let sum l = fold (+) 0 lst

let concat l = fold (^) "" lst

12

What does fold do?

let add a x = a + x

fold add 0 [1; 2; 3] →

fold add (add 0 1) [2; 3] →

fold add 1 [2; 3] →

fold add (add 1 2) [3] →

fold add 3 [3] →

fold add (add 3 3) [] →

fold add 6 [] →

6

let rec fold f a l =

 match l with

 [] -> a

 | h::t -> fold f (f a h) t

We just built the sum function!

List.fold_left

• fold f v [v1; v2; …; vn]

= fold f (f v v1) [v2; …; vn]

= fold f (f (f v v1) v2) […; vn]

= …

= f (f (f (f v v1) v2) …) vn

▪ e.g., fold add 0 [1;2;3;4] =

 add (add (add (add 0 1) 2) 3) 4 = 10

13

let rec fold f a l =

 match l with

 [] -> a

 | h::t -> fold f (f a h) t

List.fold_right

14

fold_right f [v1; v2; …; vn] v =

 f v1 (f v2 (…(f vn v)…))

fold_right add [1;2;3;4] 0 =

 add 1 (add 2 (add 3 (add 4 0))) = 10

let rec foldr f l a=

 match l with

 [] -> a

 | h::t -> f h (foldr f a t)

Type of fold_left, fold_right

15

let rec fold_left f a l =

 match l with

 [] -> a

 | h::t -> fold_left f (f a h) t

() -> -> ->

f la

Type of fold_left, fold_right

16

let rec fold_left f a l =

 match l with

 [] -> a

 | h::t -> fold_left f (f a h) t

('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

f la

When to use one or the other?

• Many problems lend themselves to fold_right

• But it does present a performance disadvantage

• The recursion builds of a deep stack: One stack
frame for each recursive call of fold_right

• An optimization called tail recursion permits optimizing
fold_left so that it uses no stack at all

• We will see how this works in a later lecture!

17

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: The Map Function
	Slide 3: Implementing map
	Slide 4: Implementing map
	Slide 5: Implementing map
	Slide 6: Quiz: What does this evaluate to?
	Slide 7: Quiz: What does this evaluate to?
	Slide 8: Fold
	Slide 9: Two Recursive Functions
	Slide 10: Notice Anything Similar?
	Slide 11: The fold Function
	Slide 12: What does fold do?
	Slide 13: List.fold_left
	Slide 14: List.fold_right
	Slide 15: Type of fold_left, fold_right
	Slide 16: Type of fold_left, fold_right
	Slide 17: When to use one or the other?

