CMSC 330:
Organization of Programming Languages

Map & Fold

Spring 2026

The Map Function

*map is a higher order function

map f [v1; v2; ..; vn] = [f vl; £ v2; .., f vn]

map cook |K:SNERATNEE IR 'Y

Implementing map

let rec addlall 1 =
match 1 with
[1 -> [1
| h::t ->
(add one h):: addlall t

let rec negall 1
match 1 with
[1 -> T[]

| h::t ->
(neg h) ::

negall t

let rec map £ 1
match 1 with

[1 -> []

| h::t -> (f h):: (map £ t)

Implementing map

let rec map £ 1 =
match 1 with
[1 -> []
| h::t -> (£ h)::(map £ t)

* What is the type of map?

-> ->

\)
Y Y
£

Implementing map

let rec map £ 1 =
match 1 with
[1 -> [1
| h::t -> (f h):: (map £ t)

* What is the type of map?

'a -> 'b} -> 'a list -> 'b list

Y ——

f 1

\

5

Quiz: What does this evaluate to?

map (fun x -> x * 4) [1;2;3]

. [1.0; 2.0, 3.0]

. [4.0;, 8.0; 12.0]
Error

. [4; 8; 12]

O o w

Quiz: What does this evaluate to?

map (fun x -> x * 4) [1;2;3]

. [1.0; 2.0, 3.0]

.[4.0;, 8.0; 12.0]
Error

. [4; 8; 12]

oo o P

Fold

» Takes a list and collapses it into a single value by
repeatedly applying a function.

fold left £ init [x1; x2; x3]
Means
f (£ (f init x1) x2) x3

Two Recursive Functions

Sum a list of ints

let rec sum 1
match 1 with

sum [1;2;3;4];;

[1 ->0

h::t -> h + (sum t)

int =

10

Concatenate a list of strings

let rec concat 1 =
match 1 with
[] -> won
| h::t -> h & (concat t)

Concat ["a";"b";"c"] ,.,.
- : string = "abc"

Notice Anything Similar?
Sum a list of ints Concatenate a list of strings

i.et rec sum i_ let rec concat 1 =

match 1 with match 1 with
[] -> 0 [1 -> """
| h::t -> (+) h (sum t) | h::t -> () h (concat t)

10

The fold Function

Sum a list of ints Concatenate a list of strings:
let rec sum 1l1lst = let rec concat lst =
match 1 with match 1 with
[1 ->0 [1 > "
| h::t -> (+) h (sum t) | h::t -> (*) h (concat t)

let rec fold £ a 1 =
match 1 with
[] -> a
| h::t -> £ h (foldr £ a t)

let sum 1 = fold (+) 0 1lst
let concat 1 = fold (*) "" 1lst

What does £fold do?

let add a x

fold
fold
fold
fold
fold
fold
fold
6

add
add
add
add
add
add
add

0

let rec fold £ a 1 =

match 1 with

[] -> a
| h::t -> fold £ (£ a h) t
=a + x
[1; 2; 3] -

(add 0 1) [2; 3] -

1

[2; 3] -

(add 1 2) [3] -

3

[3] -

(add 3 3) [] -

6

[1 -

12

We just built the sumfunction!

List.fold_left

* fold £

= fold f (f v vi)

let rec fold £ a 1 =
match 1 with
[] -> a
| h::t -> fold £ (£ a h) t

[vl; v2; ..; vn]

[v2; ..; vn]

= fold £ (£ (£f v v1) v2) [..; vn]

= f (f (f (f v vl) v2)

..) vn

e.g., fold add 0 [1;2;3;4] =
add (add (add (add 0 1) 2) 3) 4 = 10

13

. - let rec foldr £ 1 a=
List.fold_right e 1oeten

[] -> a
| h::t -=> £ h (foldr £ a t)

fold right £ [vi; v2; ..; vn] v
f vl (£f v2 (.(f vn v)..))

fold right add [1;2;3;4] 0 =
add 1 (add 2 (add 3 (add 4 0))) = 10

14

Type of fold_left, fold right

let rec fold left f a 1 =
match 1 with
[] -> a
| h::t -> fold left £ (£ a h) t

Hh <
]
=

15

Type of fold_left, fold right

let rec fold left f a 1 =
match 1 with
[] -> a
| h::t -> fold left £ (£ a h) t

('a —>

'b -> 'a) -> 'a -> 'b 1list

Y / -’ —
f a 1

16

-> 'a

When to use one or the other?

* Many problems lend themselves to fold right

 But it does present a performance disadvantage

* The recursion builds of a deep stack: One stack
frame for each recursive call of fold_right

* An optimization called tail recursion permits optimizing
fold left so thatit uses no stack at all

* We will see how this works in a later lecture!

17

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: The Map Function
	Slide 3: Implementing map
	Slide 4: Implementing map
	Slide 5: Implementing map
	Slide 6: Quiz: What does this evaluate to?
	Slide 7: Quiz: What does this evaluate to?
	Slide 8: Fold
	Slide 9: Two Recursive Functions
	Slide 10: Notice Anything Similar?
	Slide 11: The fold Function
	Slide 12: What does fold do?
	Slide 13: List.fold_left
	Slide 14: List.fold_right
	Slide 15: Type of fold_left, fold_right
	Slide 16: Type of fold_left, fold_right
	Slide 17: When to use one or the other?

