CMSC 330:
Organization of Programming Languages

Let Expressions, Tuples, Records

Spring 2026

Announcements 02/10/2026

* Quiz 1 is on Friday (02/13)
« Coding and debugging
* Review exercise one
» More Ocaml exercises (hitps://cmsc330.github.io/exercises.html)
» Coding and debugging questions in old exams (class resources page)

» Today
» Let expressions
» Tuples
« Anonymous Functions
* Records

https://cmsc330.github.io/exercises.html

Let Expressions

* Syntax
* let x
* xis a bound variable
* elisthe binding expression
* e2isthe body expression

el in e2

* let expressions bind /ocal variables
 Different from let definitions, which are at the top-level

Let Expressions
» Syntax

e let x = el in e2

» Evaluation e1 = U1 es|vl/z| = v

e el =>vi

. 62(v 15 let T =¢€; 1n ey = vy

let z = 3+4 in 3*z

21

Let Expressions
» Syntax

*let x = el in e2
* Type checking

F"Qlitl F,.’L’:t1|_€2:t2
I'F1let x =€; in ey : ¢

(T-Let)

lfel: tland
* [fassuming x : t1impliese2: t
*Then(let x = el in e2): t

Let Expressions
« Syntax

e let x = el in e2

 Example: What is the type of let z = 3+4 in 3*z?
* 3+4:int
* Assuming z:int,we have 3*z:int
* Sothetypeoflet z = 344 in 3*z isint

Let Definitions vs. Let Expressions

* At the top-level, we write
*let x = e;; (*noin e2 part¥)
* This is called a let definition, not a let expression
* Because it doesn’t, itself, evaluate to anything

* Omitting in means “from now on”:
let pi = 3.14;;
(* pi is now bound in the rest of the top-level scope *)

Let Expressions: Scope

*Inlet x = el in e2,var xis notvisible outside of e2

let pi = 3.14 in pi *. 3.0 *. 3.0;;
(bind pi (only) in body of 1et (whichispi *. 3.0 *. 3.0)%)

print float pi;; (* error:pinotbound¥)

{
float pi = 3.14;

pi * 3.0 * 3.0;
}
pi; /* pi unbound! */

Examples — Scope of Let bindings

*x;; (*Unbound value x *)

l inx + 1;; (*2%)

*let x

*let x x in x + 1;; (*Unboundvalue x*)

*(let x =1 in x + 1);; x;;(*Unboundvaluex¥)

*let x =4 in (let x = x + 1 in x) ;; (*5%)

Let Expressions in Functions

* You can use let inside of functions for local vars

let area d =
let pi = 3.14 in
let r=d /. 2.0 in
pL *. r *, r

10

Shadowing Names

« Shadowing is rebinding a name in an inner scope to

have a different meaning
 May or may not be allowed by the language

C
_ _ let x = 10 in
int 1;
let z =
void f(float i) { let x = 20 in
{ x*2 in

char *. = NULL;
x+z. (* 50 *)

11

Shadowing, by the Semantics

* Whatif e2is also aletforx?
* Substitution will stop atthe e2 of a shadowing x

Example
let x
- let
- let
- let
- 21+1
- 22

I

344 in let x

7 in let x
3*7 in x+1
21 in x+1

3*x in x+1
3*x in x+1

Will not be substituted,
since it is shadowed by
the inner let

12

Nested Functions

let filter 1lst =
let rec aux 1 =
match 1 with

| [1 -> [1
lh::t-> 1if h mod 2 <> 0 then h::aux t

else aux t

in aux 1lst

filter [1;2;3;4;5;6] (* int list = [1l; 3; 5] *)

13

Tuples

* Constructed using (el, .., en)

* Deconstructed using pattern matching
* Patternsinvolve parens and commas, e.g., (p1, p2, ..)

* Tuples are similar to C structs

* But without field labels
* Allocated onthe heap

* Tuples can be heterogenous
* Unlike lists, which must be homogenous
* (1, ["stringl";"string2"]) isavalidtuple

14

Tuple Types

* Tuple types use * to separate components
* Type joins types of its components

* Examples

* (1, 2)

* (1, "string", 3.5)
(1, ["a"; "b"], 'c'")
[(1,2)]

[(1, 2); (3, 4)]
[(1,2); (1,2,3)]

15

Tuple Types

* Examples

(1, 2) :

(1, "string", 3.5)
(1, ["a"; "b"], 'ec'")
[(1,2)]

[(1, 2); (3, 4)]
[(1,2); (1,2,3)]

int * int
int * string * float
int * string list * char

(int * int) 1list
(int * int) 1list

error

Because the first listelement has
typeint* int, but the second has
typeint* int * int- list elements
must all be of the same type

16

Pattern Matching Tuples
let plus3 t =

match t with
(x, v, z) >x +y + z;;

plus3 : int*int*int -> int = <fun>

let plus3’ (x, vy, z2) =x+vy + z;;

17

Tuples Are A Fixed Size

* This OCaml definition
let foo x =
match x with
(a, b) > a + Db
| (a, b, ¢) > a + b + ¢

has a type error. Why?

* Tuples of different size have different types
* (a, b) has type: 'a * 'b
* (a, b, c) has type: 'a * 'b * 'c

18

Anonymous Functions

e Use fun to make a function with no name

fun x —>‘x + 3 ls\\
1\ Body (in which parameter x

Parameter is bound)

(fun x -> x + 3) 5 =8

« anonymous functions and named functions follow
the same evaluation and typing rules. The only
difference is whether the function is bound to a
name.

19

Functions and Binding

* Functions are first-class, so you can bind them to other
names as you like

let £ x = x + 3;;
let g = £;;

g 5
= 8

20

let Shorthands

e let for functions is a syntactic shorthand
let £ x = body issemantically equivalentto
let £ fun x -> body

°*let next x = x + 1
e Shortfor let next = fun x -> x + 1

*let plus x y =x +y
e Shortforlet plus = fun xy -> x + y

21

Passing Functions as Arguments

You can pass functions as arguments

let plus3 x = x + 3 (* int -> int ¥*)

let twice £ z = £ (£ z)
(* ('a->'a) -> 'a -> 'a ¥*)

twice plus3 5 = 11

22

Records

* Records: identify elements by name
* Elements of a tuple are identified by position

* Define a record type before defining record values

type date = { month: string; day: int; year: int }

 Define arecord value

let today = { day=16; year=2017; month=“f"*“eb” };;
today : date = { day=16; year=2017; month="“feb” };;

23

Destructing Records

type date
let today

{ month: string; day: int; year: int }
{ day=16; year=2017; month=“feb” };;

* Access by field name or pattern matching
today.month;; (* feb ¥*)

let { year } = today in (* binds year to 2017 ¥*)
let { month= ; day=d } = today in

24

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Announcements 02/10/2026
	Slide 3: Let Expressions
	Slide 4: Let Expressions
	Slide 5: Let Expressions
	Slide 6: Let Expressions
	Slide 7: Let Definitions vs. Let Expressions
	Slide 8: Let Expressions: Scope
	Slide 9: Examples – Scope of Let bindings
	Slide 10: Let Expressions in Functions
	Slide 11: Shadowing Names
	Slide 12: Shadowing, by the Semantics
	Slide 13: Nested Functions
	Slide 14: Tuples
	Slide 15: Tuple Types
	Slide 16: Tuple Types
	Slide 17: Pattern Matching Tuples
	Slide 18: Tuples Are A Fixed Size
	Slide 19: Anonymous Functions
	Slide 20: Functions and Binding
	Slide 21: let Shorthands
	Slide 22: Passing Functions as Arguments
	Slide 23: Records
	Slide 24: Destructing Records

