
CMSC 330:
Organization of Programming Languages

Let Expressions, Tuples, Records

Spring 2026

1

Announcements 02/10/2026

• Quiz 1 is on Friday (02/13)
• Coding and debugging

• Review exercise one

• More Ocaml exercises (https://cmsc330.github.io/exercises.html)

• Coding and debugging questions in old exams (class resources page)

• Today
• Let expressions

• Tuples

• Anonymous Functions

• Records

2

https://cmsc330.github.io/exercises.html

3

Let Expressions

• Syntax
• let x = e1 in e2

• x is a bound variable
• e1 is the binding expression
• e2 is the body expression

• let expressions bind local variables
• Different from let definitions, which are at the top-level

Let Expressions

• Syntax
• let x = e1 in e2

• Evaluation
• e1 ⇒ v1
• e2{v1/x}

4

let z = 3+4 in 3*z

21

Let Expressions

• Syntax
• let x = e1 in e2

• Type checking

• If e1 : t1 and
• If assuming x : t1 implies e2 : t
• Then (let x = e1 in e2) : t

5

Let Expressions

• Syntax
• let x = e1 in e2

• Example: What is the type of let z = 3+4 in 3*z ?
• 3+4 : int
• Assuming z : int, we have 3*z : int
• So the type of let z = 3+4 in 3*z is int

6

7

Let Definitions vs. Let Expressions

• At the top-level, we write
• let x = e;; (* no in e2 part *)
• This is called a let definition, not a let expression

• Because it doesn’t, itself, evaluate to anything

• Omitting in means “from now on”:
let pi = 3.14;;

(* pi is now bound in the rest of the top-level scope *)

8

Let Expressions: Scope

• In let x = e1 in e2, var x is not visible outside of e2

 let pi = 3.14 in pi *. 3.0 *. 3.0;;

 (bind pi (only) in body of let (which is pi *. 3.0 *. 3.0) *)

 print_float pi;; (* error: pi not bound *)

{

 float pi = 3.14;

 pi * 3.0 * 3.0;

}

pi; /* pi unbound! */

9

Examples – Scope of Let bindings

• x;; (* Unbound value x *)

• let x = 1 in x + 1;; (* 2 *)

• let x = x in x + 1;; (* Unbound value x *)

• (let x = 1 in x + 1);; x;;(* Unbound value x *)

• let x = 4 in (let x = x + 1 in x) ;; (* 5 *)

10

Let Expressions in Functions

• You can use let inside of functions for local vars

let area d =

 let pi = 3.14 in

 let r = d /. 2.0 in

 pi *. r *. r

11

Shadowing Names

• Shadowing is rebinding a name in an inner scope to
have a different meaning
• May or may not be allowed by the language

C

int i;

void f(float i) {

 {

 char *i = NULL;

 ...

 }

}

let x = 10 in

 let z =

 let x = 20 in

 x*2 in

 x+z. (* 50 *)

Shadowing, by the Semantics

• What if e2 is also a let for x ?
• Substitution will stop at the e2 of a shadowing x

12

Example
let x = 3+4 in let x = 3*x in x+1

- let x = 7 in let x = 3*x in x+1

- let x = 3*7 in x+1

- let x = 21 in x+1

- 21+1

- 22

Will not be substituted,
since it is shadowed by
the inner let

13

Nested Functions

let filter lst =

 let rec aux l =

 match l with

 |[] -> []

 |h::t-> if h mod 2 <> 0 then h::aux t

 else aux t

 in aux lst

filter [1;2;3;4;5;6] (* int list = [1; 3; 5] *)

14

Tuples

• Constructed using (e1, …, en)
• Deconstructed using pattern matching

• Patterns involve parens and commas, e.g., (p1, p2, …)

• Tuples are similar to C structs
• But without field labels
• Allocated on the heap

• Tuples can be heterogenous
• Unlike lists, which must be homogenous
• (1, ["string1";"string2"]) is a valid tuple

15

Tuple Types

• Tuple types use * to separate components
• Type joins types of its components

• Examples
• (1, 2) :

• (1, "string", 3.5) :

• (1, ["a"; "b"], 'c') :

• [(1,2)] :

• [(1, 2); (3, 4)] :

• [(1,2); (1,2,3)] :

16

Tuple Types

•Examples

• (1, 2) :

• (1, "string", 3.5) :

• (1, ["a"; "b"], 'c') :

• [(1,2)] :

• [(1, 2); (3, 4)] :

• [(1,2); (1,2,3)] :

int * int

int * string * float

int * string list * char

(int * int) list

(int * int) list

error

Because the first list element has
type int * int, but the second has
type int * int * int – list elements
must all be of the same type

17

Pattern Matching Tuples

let plus3 t =

 match t with

 (x, y, z) -> x + y + z;;

plus3 : int*int*int -> int = <fun>

let plus3’ (x, y, z) = x + y + z;;

18

Tuples Are A Fixed Size

• This OCaml definition
 let foo x =

match x with

 (a, b) -> a + b

| (a, b, c) -> a + b + c

 has a type error. Why?

• Tuples of different size have different types
• (a, b) has type: 'a * 'b

• (a, b, c) has type: 'a * 'b * 'c

19

Anonymous Functions

• Use fun to make a function with no name

(fun x -> x + 3) 5

• anonymous functions and named functions follow
the same evaluation and typing rules. The only
difference is whether the function is bound to a
name.

fun x -> x + 3

Parameter
Body (in which parameter x

 is bound)

= 8

20

Functions and Binding

• Functions are first-class, so you can bind them to other
names as you like

let f x = x + 3;;

let g = f;;

g 5

= 8

21

let Shorthands
• let for functions is a syntactic shorthand

let f x = body is semantically equivalent to
let f = fun x -> body

• let next x = x + 1

• Short for let next = fun x -> x + 1

• let plus x y = x + y

• Short for let plus = fun x y -> x + y

22

Passing Functions as Arguments

You can pass functions as arguments

let plus3 x = x + 3 (* int -> int *)

let twice f z = f (f z)

(* ('a->'a) -> 'a -> 'a *)

 twice plus3 5 = 11

23

Records

• Records: identify elements by name
• Elements of a tuple are identified by position

• Define a record type before defining record values

• Define a record value

type date = { month: string; day: int; year: int }

let today = { day=16; year=2017; month=“f”^“eb” };;

today : date = { day=16; year=2017; month=“feb” };;

24

Destructing Records

• Access by field name or pattern matching

type date = { month: string; day: int; year: int }

let today = { day=16; year=2017; month=“feb” };;

today.month;; (* feb *)

let { year } = today in (* binds year to 2017 *)

let { month=_; day=d } = today in

…

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Announcements 02/10/2026
	Slide 3: Let Expressions
	Slide 4: Let Expressions
	Slide 5: Let Expressions
	Slide 6: Let Expressions
	Slide 7: Let Definitions vs. Let Expressions
	Slide 8: Let Expressions: Scope
	Slide 9: Examples – Scope of Let bindings
	Slide 10: Let Expressions in Functions
	Slide 11: Shadowing Names
	Slide 12: Shadowing, by the Semantics
	Slide 13: Nested Functions
	Slide 14: Tuples
	Slide 15: Tuple Types
	Slide 16: Tuple Types
	Slide 17: Pattern Matching Tuples
	Slide 18: Tuples Are A Fixed Size
	Slide 19: Anonymous Functions
	Slide 20: Functions and Binding
	Slide 21: let Shorthands
	Slide 22: Passing Functions as Arguments
	Slide 23: Records
	Slide 24: Destructing Records

