Let bindings

We use let to bind name (identifier) to a value:

#let x = 100;; (*xis an immutable binding 100 *)
val x : int = 100

Since functions are values, just like ints or strings, letis
also used to define functions:

#let add x vy = x + y;;
val add : int -> int -> int

Type Annotations

OCaml compiler infers the types. But type inference is tricky. It
gives vague error messages. We can annotate types manually.

The syntax (e : t) asserts that “e has type t".
let (x : int) = 3
let z = (x : int) + 5

Define functions’ parameter and return types
let add (x:int) (y:int):int = x + y
let idx =x (* 'a - ‘a ¥*)
let id (x:int) = x (* int - int ¥*)

Checked by compiler: Very useful for debugging.

Lists in OCaml|

 The basic data structure in OCaml

— Lists can be of arbitrary length
* Implemented as a linked data structure

— Lists must be homogeneous
» All elements have the same type

* Operations
— Construct lists
— Destruct them via pattern matching

Constructing Lists: Syntax

Syntax
« [1 is the empty list (pronounced “nil”)

« el::e2prepends element el to list e2
— elisthe head, e2is the talil

« [el;e2;..;en] is syntactic sugarforel::e2::..:

Examples
3::[1 (* [3] *)
2::(3::11) (* [2; 3] *)
[1; 2; 3] (* 1::(2::(3::[1)) *)

.en: .

[]

Constructing Lists: Evaluation

Evaluation
« [] iIs avalue

e [el;..;en] evaluestoalistof [v1;..;vn]
— Where

- el > vl,

— en= vn

Constructing Lists: Examples

let vy = [1; 1+1; 1+1+1] ;;
val y : int list = [1; 2; 3]

let x = 4::y ;;

val x : int list = [4; 1; 2; 3]
let z = 5::y ;;
val z : int list = [5; 1; 2; 3]

let m = “hello”::”bob”::[];;
val m : string list = [“hello”; “bob”]

Constructing Lists: Typing

Nil:
[1: 'a list (* emptylist *)

Cons:
If el: tand e2: tlistthenel::e2: tlist

Examples

let x = [1;"world"] ;;

This expression has type string but an expression was
expected of type int

let m = [[1];[2;3]];;
val y : int list list = [[1]; [2; 3]]

let vy = 0::[1;2;3] ;;
val y : int list = [0; 1; 2; 3]

let w = [1;2]::y ;;
This expression has type int list but is here used with
type int list list

Lists in Ocaml are Linked

[1;2;3] Is represented as:

1

—>

2

B —

[]

1

head

tail

Lists of Lists

» Lists can be nested arbitrarily

— Example: [[9; 10; 111; [5; 4; 3; 2]]
« Type int list list, also written as (int 1list)list

—T—>

[]

[]

10

11

[]

10

Lists are Immutable

« No way to mutate (change) an element of a list
 Instead, build up new lists out of old, e.g., using ::

let x = [1;2;3;4]
let y = 5::x
let z = 6::x

X

Y i
zZ /
— 0

Quiz 1

What is the type of the following expression?

[1.0; 2.0; 3.0; 4.0]

. array

. list

. float list
. 1nt list

o QW P

12

Quiz 1

What is the type of the following expression?

[1.0; 2.0; 3.0; 4.0]

. array

. list

. float 1list
. int list

o QW P

13

Quiz 2

What is the type of the following expression?

10::[20]

. 1nt
. 1nt list
.1nt list 1list

. €@rror

o QW P

14

Quiz 2

What is the type of the following expression?

10::[20]

. 1nt
.1nt list
.int list 1list

. €@rror

o Q W P

15

Quiz 3

What is the type of the following definition?

o QW P

let £f a = “umd”::[a]

. string
. string
. string

. string

-> string
list
list -> string list

-> string list

16

Quiz 3

What is the type of the following definition?

o Q w P»

let £f a = “umd”::[a]

. string
. string
. string

. string

-> string
list
list -> string list

-> string list

17

Pattern Matching

* To pull lists apart, use the match construct
e Syntax

match e with
| p1 -> el

| ..
| pn -> en

pl...pn are patterns

el...en are branch expressions

18

Pattern Matching Example

let is empty 1 =
match 1 with
[] -> true
| (h::t) -> false

» Example runs
* 1s_empty [] (* true *)
* is empty [1] (* false *)
* is empty [1;2] (* false *)

19

Pattern Matching Example (cont.)

let hd 1 =
match 1 with
(h::t) -> h

« Example runs
—hd [1;2;3](* 1 ¥*)
—hd [2;3] (* 2 *)
—hd [3] (* 3 *)
—hd [] (* Exception: Match failure *)

20

Pattern Matching Example (cont.)

let neg n = let is empty 1 =
match 1 with

[] -> true
| true-> false | -> false

match n with

| _—-> true

 An underscore _is a wildcard pattern. It matches
anything

21

Quiz 4

To what does the following expression evaluate?

match [1;2;3] with

[1] -> [0]
| h::t -> t

A.]
B. [0]
C. [1]
D. [2;3]

22

Quiz 4

To what does the following expression evaluate?

match [1;2;3] with

[1] -> [0]
| h::t -> t

A.]
B. [0]
C. [1]

D. [2;3]

23

"Deep" pattern matching

e a: :b matches lists with at least one element

« a::[] matches lists with exactly one element

« a::b::[] matches lists with exactly two elements

e a::b::c::d matches lists with at least three elements

24

Quiz 5

To what does the following expression evaluate?
match [1;2;3] with

1::[] -> [0]
. . -> [1]
1:: ::[1 -> []

A. []

B. [0]

C. [1]

D. [2;3]

25

Quiz 5

To what does the following expression evaluate?
match [1;2;3] with

1::[] -> [0]
. . -> [1]
1:: ::[1 -> []

A. []

B. [0]

C. [1]

D. [2;3]

26

Pattern Matching — An Abbreviation

- let £ p = e, Where pis a pattern
— is shorthand for let £ x = match x with p -> e

 Examples
- let hd (h::) =h
-let t1 (_::t) = ¢t

« Useful if there’s only one acceptable input

27

Polymorphic Types

« The hd function works for any type of list
- hd [1; 2; 3] (* 1 %)
_ hd ["aH; Hb"; Hc"] (* "a" *)

« OCaml gives such functions polymorphic types
- hd : 'a list -> ‘a

* These are basically generic types in Java
— 'a list islike List<T>

28

Examples Of Polymorphic Types

let t1 (_::t) =t

t1 [1; 2; 3]1;;
- : int list = [2; 3]

t1 [1.0; 2.0];;
- : float l1list = [2.0]
(* t1 : 'a list -> 'a list ¥*)

Examples Of Polymorphic Types

letegqxy = (x =vy)

s #eqgl 2;;
- : bool = false

eq “hello” “there”;;
- : bool = false

eq “hello” 1 --typeerror
(*egq : 'a -> 'a -> bool *)

30

Quiz 6

What is the type of the following function?

let £ x y =
if x = y then 1 else 0

. '‘a -> ‘b -> int
. '‘a -> ‘a -> bool
. '‘a -> ‘a -> int

. i1nt

O Q W »

31

Quiz 6

What is the type of the following function?

let £ x y =
if x = y then 1 else 0

. '‘a -> ‘b -> int
. '‘a -> ‘a -> bool
. ‘a -> ‘a -> int

O Q W »

. i1nt

32

Missing Cases

« Exceptions for inputs that don’t match any pattern
— OCaml will warn you about non-exhaustive matches

 Example:
let hd 1 = match 1 with (h::) -> h;;

Warning: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

[]

hd [];;
Exception: Match failure ("", 1, 11).

33

Pattern matching is AWESOME

1. You can't forget a case

— Compiler issues inexhaustive pattern-match warning
2. You can't duplicate a case

— Compiler issues unused match case warning
3. You can’t get an exception

— Can’t do something like List.hd []

4. Pattern matching leads to elegant, concise,
beautiful code

34

Lists and Recursion

* Lists have a recursive structure
— And so most functions over lists will be recursive

let rec length 1 = match 1 with
[] >0
| (_::t) -> 1 + (length t)

— This is just like an inductive definition

» The length of the empty list is zero

» The length of a nonempty list is 1 plus the length of the tail
— Type of length?

e ‘a list -> int

35

More Examples

. sum 1 (* sum of elts in 1 ¥*)
let rec sum 1 = match 1 with
[T -=> O

| (x::xs) -> x + (sum xs)

. negate 1 (* negate elements in list *)
let rec negate 1 = match 1 with
[1 -> [1]

| (x::xs8) -> (-x) :: (negate xs)

. last 1 (* last element of 1 ¥*)
let rec last 1 = match 1 with
[x] -> x
| (x::xs) -> last xs

36

More Examples (cont.)

(* return a list containing all the elements in the 1list 1
followed by all the elements in list m *)

e append 1 m
let rec append 1 m = match 1 with
[] -> m

| (x::xs) -> x:: (append xs m)

e revl (* reverse list; hint: use append ¥*)
let rec rev 1 = match 1 with

[1 -> I1

| (x::xs) -> append (rev xs) (x::[])

- rev takes O(n?) time. Can you do better?

37

	Slide 1: Let bindings
	Slide 2: Type Annotations
	Slide 3: Lists in OCaml
	Slide 4: Constructing Lists: Syntax
	Slide 5: Constructing Lists: Evaluation
	Slide 6: Constructing Lists: Examples
	Slide 7: Constructing Lists: Typing
	Slide 8: Examples
	Slide 9: Lists in Ocaml are Linked
	Slide 10: Lists of Lists
	Slide 11: Lists are Immutable
	Slide 12: Quiz 1
	Slide 13: Quiz 1
	Slide 14: Quiz 2
	Slide 15: Quiz 2
	Slide 16: Quiz 3
	Slide 17: Quiz 3
	Slide 18: Pattern Matching
	Slide 19: Pattern Matching Example
	Slide 20: Pattern Matching Example (cont.)
	Slide 21: Pattern Matching Example (cont.)
	Slide 22: Quiz 4
	Slide 23: Quiz 4
	Slide 24: "Deep" pattern matching
	Slide 25: Quiz 5
	Slide 26: Quiz 5
	Slide 27: Pattern Matching – An Abbreviation
	Slide 28: Polymorphic Types
	Slide 29: Examples Of Polymorphic Types
	Slide 30: Examples Of Polymorphic Types
	Slide 31: Quiz 6
	Slide 32: Quiz 6
	Slide 33: Missing Cases
	Slide 34: Pattern matching is AWESOME
	Slide 35: Lists and Recursion
	Slide 36: More Examples
	Slide 37: More Examples (cont.)

