
CMSC 330: Organization of Programming 

Languages

Functional Programming with OCaml

1CMSC330 Fall 2025



Review: Interpreter & Compiler

2

Compiler: 
• translates code written in a high-level programming language 

into a lower-level language

•  like assembly language, byte code, and machine code.

• it converts the code ahead of time before the program runs.

• we run the compiled to code to get the output

• Compiler optimizes the program

Interpreter
• translates the code line-by-line when the program is running

• we get the output when the code completes.



Review: Interpreter & Compiler

3

Optimization

 
int main(){

  int a = 1+2+3+4;

  return a;

}

% gcc -c a.c -o a.o

% objdump -d a.o

push   %rbp

mov    %rsp,%rbp

movl   $0xa,-0x4(%rbp)

mov    -0x4(%rbp),%eax

pop    %rbp

ret

1+2+3+4 = 10 = 0xa



Review: Interpreter & Compiler

4

• A simple OCaml Interpreter and Compiler Demo

• …

• We will learn:

• Interpreter in CMSC330

• Compiler in CMSC430



What is a functional language?

A functional language: 

• defines computations as mathematical functions

• discourages use of mutable state

State: the information maintained by a computation

x = x + 1  ?

5



Functional vs. Imperative

Functional languages

• Higher level of abstraction: What to compute, not how

• Immutable state: easier to reason about (meaning)

• Easier to develop robust software

Imperative languages

• Lower level of abstraction: How to compute, not what 

• Mutable state: harder to reason about (behavior)

• Harder to develop robust software 

6



Commands specify how to compute, by destructively changing state:

 x = x+1;

 a[i] = 42;

 p.next = p.next.next;

The fantasy of changing state (mutability)

• It's easy to reason about: the machine does this, then this...

The reality?

• Machines are good at complicated manipulation of state 

• Humans are not good at understanding it!

Imperative Programming

7



Functions/methods may mutate state, a side effect

int cnt = 0;

int f(Node *r) {

 r->data = cnt;

 cnt++;

 return cnt;

}

Imperative Programming: Reality

Mutation breaks referential transparency: ability to replace an 

expression with its value without affecting the result

f(x) + f(x) + f(x)  ≠  3 * f(x)

8



Imperative Programming: Reality

Worse: There is no single state

• Programs have many threads, spread across many cores, 

spread across many processors, spread across many 

computers... 

• each with its own view of memory

So: Can’t look at one piece of code and reason about its behavior

9

Thread 1 on CPU 1 Thread 2 on CPU 2

x = x+1;

a[i] = 42;

p.next = p.next.next;

x = x+1;

a[i] = 42;

p.next = p.next.next;



Expressions specify what to compute 

• Variables never change value

• Like mathematical variables 

• Functions (almost) never have side effects 

The reality of immutability: 

• No need to think about state 

• Can perform local reasoning, assume referential transparency 

Easier to build correct programs

Functional programming

10



ML-style (Functional) Languages

• ML (Meta Language)

– Univ. of Edinburgh, 1973

– Part of a theorem proving system LCF

• Standard ML

– Bell Labs and Princeton, 1990; Yale, AT&T, U. Chicago

• OCaml (Objective CAML)

– INRIA, 1996
• French Nat’l Institute for Research in Computer Science

– O is for “objective”, meaning objects (which we’ll ignore)

• Haskell (1998): lazy functional programming

• Scala (2004): functional and OO programming

11



Key Features of ML

• First-class functions

– Functions can be parameters to other functions (“higher order”) and return 

values, and stored as data

• Favor immutability (“assign once”)

• Data types and pattern matching

– Convenient for certain kinds of data structures

• Type inference

– No need to write types in the source language

• But the language is statically typed

– Supports parametric polymorphism

• Generics in Java, templates in C++

• Exceptions and garbage collection

12



Why study functional programming?

Functional languages predict the future:

• Garbage collection

• LISP [1958], Java [1995], Python 2 [2000], Go [2007]

• Parametric polymorphism (generics)

• ML [1973], SML [1990], Java 5 [2004], Rust [2010]

• Higher-order functions 

• LISP [1958], Haskell [1998], Python 2 [2000], Swift [2014]

• Type inference 

• ML [1973], C++11 [2011], Java 7 [2011], Rust [2010]

• Pattern matching

• SML [1990], Scala [2002], Rust [2010], Java 16 [2021] 
• http://cr.openjdk.java.net/~briangoetz/amber/pattern-match.html 

13

http://cr.openjdk.java.net/~briangoetz/amber/pattern-match.html
http://cr.openjdk.java.net/~briangoetz/amber/pattern-match.html
http://cr.openjdk.java.net/~briangoetz/amber/pattern-match.html
http://cr.openjdk.java.net/~briangoetz/amber/pattern-match.html


Why study functional programming?

Functional languages in the real world

14

This slide is old---now 

there are even more!



Useful Information on OCaml

• Translation available on the 

class webpage

– Developing Applications with 

Objective Caml

• Webpage also has link to 

another book

– Introduction to the Objective Caml 

Programming Language

15



More Information on OCaml

• Book designed to introduce 

and advance understanding of 

OCaml

– Authors use OCaml in the real 

world (2nd edition)

– Introduces new libraries, tools

• Free HTML online

– realworldocaml.org/

16



Similar Courses

• CS3110 (Cornell)

• CSE341 (Washington)

• 601.426 (Johns Hopkins)

• COS326 (Princeton)

• CS152 (Harvard)

• CS421 (UIUC)

17



Other Resources 

CMSC 330 – Spring 2024 18

• Cornell cs3110 book is another course which uses 

OCaml; it is more focused on programming and less on 

PL theory than this class is.

• ocaml.org is the home of OCaml for finding downloads, 

documentation, etc. The tutorials are also very good 

and there is a page of books.

• OCaml from the very beginning is a free online book.

https://www.cs.cornell.edu/courses/cs3110/2020sp/textbook/
https://www.cs.cornell.edu/courses/cs3110/2020sp/textbook/
http://ocaml.org/
http://ocaml.org/
http://ocaml.org/learn/tutorials/
http://ocaml.org/learn/books.html
https://johnwhitington.net/ocamlfromtheverybeginning/
https://johnwhitington.net/ocamlfromtheverybeginning/
https://johnwhitington.net/ocamlfromtheverybeginning/


OCaml Coding Guidelines

• We will not grade on style, but style is important

• Recommended coding guidelines:

• https://ocaml.org/learn/tutorials/guidelines.html

19

https://ocaml.org/learn/tutorials/guidelines.html
https://ocaml.org/learn/tutorials/guidelines.html


CMSC 330: Organization of Programming 

Languages

OCaml Expressions, Functions

20



Lecture Presentation Style

• Our focus: semantics and idioms for Ocaml
• Semantics is what the language does

• Idioms are ways to use the language well

• We will also cover some useful libraries

• Syntax is what you type, not what you mean

• In one lang: Different syntax for similar concepts

• Across langs: Same syntax for different concepts

• Syntax can be a source of fierce disagreement among language 

designers!

21



Expressions

• Expressions are our primary building block

– Akin to statements in imperative languages

• Every kind of expression has

– Syntax

• We use metavariable e to designate an arbitrary expression

– Semantics

• Type checking rules (static semantics): produce a type or fail with an error 

message

• Evaluation rules (dynamic semantics): produce a value

– (or an exception or infinite loop)

– Used only on expressions that type-check

22



Values

• A value is an expression that is final

– 34 is a value, true is a value 

– 34+17 is an expression, but not a value

• Evaluating an expression means running it until it’s a value
– 34+17 evaluates to 51

• We use metavariable v to designate an arbitrary value

expressions values

23



Types

• Types classify expressions

– The set of values an expression could evaluate to 

– We use metavariable t to designate an arbitrary type

• Examples include int, bool, string, and more. 

• Expression e has type t if e will (always) evaluate to a 

value of type t

– 0, 1, and -1 are values of type int while true has type bool

– 34+17 is an expression of type int, since it evaluates to 51, which 

has type int

• Write e : t to say e has type t

– Determining that e has type t is called type checking 

• or simply, typing

24



If Expressions

if e1 then e2 else e3

: bool :t
(each has the same type t)

25

• Syntax

• Type checking

– Conclude if e1 then e2 else e3 has type t  if

• e1 has type bool 

• Both e2 and e3 have type t (for some t)

(                                               ) : t



If Expressions: Type Checking and Evaluation

# if 7 > 42 then "hello" else “goodbye";;

- : string = "goodbye”

# if true then 3 else 4;;

- : int = 3

# if false then 3 else 3.0;;

Error: This expression has type float but an expression was 

expected of type int

26

• Evaluation (happens if type checking succeeds)

– If e1 ⇒ true, and e2 ⇒ v, then 

 “if e1 then e2 else e3” ⇒ v

– If e1 ⇒ false, and e3 ⇒ v, then 

  “if e1 then e2 else e3” ⇒ v



Quiz 1

To what value does this expression evaluate?

if 10 < 20 then 2 else 1

A. 0

B. 1

C. 2

D. none of the above

27



Quiz 1

To what value does this expression evaluate?

if 10 < 20 then 2 else 1

A. 0

B. 1

C. 2

D. none of the above

28



Quiz 2

To what value does this expression evaluate?

if 22 >10 then 2021 else “home”

A. 0

B. 1

C. 2

D. none of the above

29



Quiz 2

To what value does this expression evaluate?

if 22 > 10 then 2021 else “home”

A. 0

B. 1

C. 2

D. none of the above: doesn’t type check so never gets a 

chance to be evaluated

30



Function Definitions

• OCaml functions are like mathematical functions

– Compute a result from provided arguments

(* requires n>= 0 

 returns: n! *)

let rec fact n =

  if n = 0 then

     1

  else

     n * fact (n-1)

function 

body

31



Type Inference

• As we just saw, a declared variable need not be 

annotated with its type

– The type can be inferred

– Type inference happens as a part of type checking

• Determines a type that satisfies code’s constraints 

(* requires n>=0 *)

(* returns: n! *)

let rec fact n =

  if n = 0 then

     1

  else

     n * fact (n-1)

n’s type is int. Why?

32



Calling Functions, aka Function Application

• Syntax  f e1 … en

– Parentheses not required around argument(s)

– No commas; use spaces instead

• Evaluation
– Find the definition of f

• i.e., let rec f x1 … xn = e

– Evaluate arguments e1 … en to values v1 … vn

– Substitute arguments v1, … vn for params x1, ... xn in body e 

• Call the resulting expression e’

– Evaluate e’ to value v, which is the final result

33

fact (2+1)



Calling Functions: Evaluation

• fact 2 

⮚ if 2=0 then 1 else 2*fact(2-1)

⮚ 2 * fact 1

⮚ 2 * (if 1=0 then 1 else 1*fact(1-1))

⮚ 2 * 1 * fact 0

⮚ 2 * 1 * (if 0=0 then 1 else 0*fact(0-1))

⮚ 2 * 1 * 1

⮚ 2

let rec fact n =

  if n = 0 then

     1

  else

     n * fact (n-1)
Example evaluation

34

Fun fact: Evaluation 

order for function call 

arguments in OCaml 

is right to left 

(not left to right)



Function Types

• In OCaml, -> is the function type constructor

– Type t1 -> t is a function with argument or domain type t1 

and return or range type t

– Type t1 -> t2 -> t is a function that takes two inputs, of 

types t1 and t2, and returns a value of type t. Etc.

• Examples
– not

– int_of_float  

– +

(* type bool -> bool *)

(* type float -> int *)

35

(* type int -> int -> int *)



Type Checking: Calling Functions

• Syntax  f e1 … en

• Type checking

– If       f : t1 -> … -> tn -> u 

– and   e1 : t1, …, en : tn 

– then  f e1 … en : u

• Example:
– not true : bool

– since not : bool -> bool 

– and true : bool

36



Type Checking: Example

let rec fact n =

  if n = 0 then

     1

  else

     n * fact(n-1)

37

(n=0): bool assuming n:int

(           )

(                    )

(n * fact (n-1):int



Function Type Checking: More Examples

– let next x = x + 1

– let fn x = (int_of_float x) * 3  

– fact

– let sum x y = x + y   

(* type int -> int *)

(* type float -> int *)

(* type int -> int *)

38

(* type int -> int -> int *)



Quiz 3: What is the type of foo 3 1.5

a) Type Error

b) int

c) float

d) int -> int -> int

39

let rec foo n m =

  if n >= 9 || n > 0 then 

    m

  else

    m +. 10.3 

: float -> float -> float



Quiz 3: What is the type of foo 3 1.5

a) Type Error

b) int

c) float

d) int -> int -> int

let rec foo n m =

  if n >= 9 || n > 0 then 

    m

  else

    m +. 10.3 

40

: float -> float -> float



Type Annotations

• The syntax (e : t) asserts that “e has type t”

– This can be added (almost) anywhere you like
  

 let (x : int) = 3

  let z = (x : int) + 5

• Define functions’ parameter and return types
  let fn (x:int):float =

         (float_of_int x) *. 3.14

• Checked by compiler: Very useful for debugging

41



Quiz 4: What is the value of bar 4

a) Syntax Error

b) 4

c) 5

d) 8

let rec bar(n:int):int =

  if n = 0 || n = 1 then 1

  else 

    bar (n-1) + bar (n-2) 

42



Quiz 4: What is the value of bar 4

a) Syntax Error

b) 4

c) 5

d) 8

let rec bar(n:int):int =

  if n = 0 || n = 1 then 1

  else 

    bar (n-1) + bar (n-2) 

43


	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Review: Interpreter & Compiler
	Slide 3: Review: Interpreter & Compiler
	Slide 4: Review: Interpreter & Compiler
	Slide 5: What is a functional language?
	Slide 6: Functional vs. Imperative
	Slide 7: Imperative Programming
	Slide 8: Imperative Programming: Reality
	Slide 9: Imperative Programming: Reality
	Slide 10: Functional programming
	Slide 11: ML-style (Functional) Languages
	Slide 12: Key Features of ML
	Slide 13: Why study functional programming?
	Slide 14: Why study functional programming?
	Slide 15: Useful Information on OCaml
	Slide 16: More Information on OCaml
	Slide 17: Similar Courses
	Slide 18: Other Resources 
	Slide 19: OCaml Coding Guidelines
	Slide 20: CMSC 330: Organization of Programming Languages
	Slide 21: Lecture Presentation Style
	Slide 22: Expressions
	Slide 23: Values
	Slide 24: Types
	Slide 25: If Expressions
	Slide 26: If Expressions: Type Checking and Evaluation
	Slide 27: Quiz 1
	Slide 28: Quiz 1
	Slide 29: Quiz 2
	Slide 30: Quiz 2
	Slide 31: Function Definitions
	Slide 32: Type Inference
	Slide 33: Calling Functions, aka Function Application
	Slide 34: Calling Functions: Evaluation
	Slide 35: Function Types
	Slide 36: Type Checking: Calling Functions
	Slide 37: Type Checking: Example
	Slide 38: Function Type Checking: More Examples
	Slide 39: Quiz 3: What is the type of foo 3 1.5
	Slide 40: Quiz 3: What is the type of foo 3 1.5
	Slide 41: Type Annotations
	Slide 42: Quiz 4: What is the value of bar 4
	Slide 43: Quiz 4: What is the value of bar 4

