
CMSC 330:
Organization of Programming Languages

Lists and Pattern Matching

Spring 2026

1

Let bindings

2

We use let to bind name (identifier) to a value:

 let x = 100;; (* x is an immutable binding 100 *)
 val x : int = 100

Since functions are values, just like ints or strings, let is
also used to define functions:

 let add x y = x + y;;

 val add : int -> int -> int

3

Lists in OCaml

• The basic data structure in Ocaml

• Lists can be of arbitrary length

• Implemented as a linked data structure

• Lists must be homogeneous
• All elements have the same type

• Operations

• Construct lists

• Destruct them via pattern matching

4

Lists Syntax

• [] is the empty list (pronounced “nil”)
• e1::e2 prepends element e1 to list e2

– e1 is the head, e2 is the tail

• [e1;e2;…;en] is syntactic sugar for e1::e2::…::en::[]

Examples
3::[] (* [3] *)

2::(3::[]) (* [2; 3] *)

[1; 2; 3] (* 1::(2::(3::[])) *)

Constructing Lists: Evaluation

Evaluation
• [] is a value
• [e1;…;en] evaluates to a list of [v1;…;vn]

• Where

• e1 ⇒ v1,
• ...,
• en ⇒ vn

5

6

Constructing Lists: Examples

let y = [1; 1+1; 1+1+1]

let x = 4::y ;;

let z = 5::y ;;

let m = “hello”::”bob”::[];;

:: operator appends a single item to the front of another list.

List Representation

• A nonempty list is a pair (element, rest of list).

• A list is either

• The empty list []

• Or a pair consisting of an element and a list

• [1;2;3] is represented as:

7

8

List: Typing

Nil:

[]: 'a list (* empty list *)

Cons:

If e1 : t and e2 : t list then e1::e2 : t list

9

List Typing Examples

let y = 0::[1;2;3] (* int list *)

let l = [];; (* ‘a list *)

let m = [[1];[2;3]];; (*int list list *)

let w = ["apple"; "banana"; "watermelon"];;

let x = [1;"world"] ;; (* type error *)

Lists are immutable

• Lists are immutable in Ocaml.

• Cannot change an element of a list.

• Instead, create new lists from existing ones

let x = [1;2;3;4];;

let y = 5::x;;

let z = 6::x;;

10

11

Pattern Matching

• To pull lists apart, use the match construct

• Syntax

match e with

| p1 -> e1

| …

| pn -> en

• p1...pn are patterns

• e1...en are branch expressions

12

Pattern Matching Example

let is_empty l =

 match l with

 [] -> true

 | (h::t) -> false

Example runs

• is_empty [] (* true *)

• is_empty [1] (* false *)

• is_empty [1;2](* false *)

13

Pattern Matching Example (cont.)

let hd l =

 match l with

 (h::t) -> h

• Example runs
• hd [1;2;3](* 1 *)

• hd [2;3] (* 2 *)

• hd [3] (* 3 *)

• hd [] (* Exception: Match_failure *)

14

Pattern Matching Example (cont.)

let neg n =

 match n with

 |true-> false

 |_-> true

• An underscore _ is a wildcard pattern. It matches anything

let is_empty l =

 match l with

 [] -> true

 |_-> false

15

"Deep" pattern matching

• a::b matches lists with at least one element

• a::[] matches lists with exactly one element

• a::b::[] matches lists with exactly two elements

• a::b::c::d matches lists with at least three elements

16

Pattern Matching – An Abbreviation

• If there is only one pattern, then

 let f x = match x with p -> e

is shorthand for
 let f p = e

• Example:

let fst pair =

 match pair with

 | (x, _) -> x;;

let fst (x, _) = x;;

17

Pattern matching is AWESOME

1. You can’t forget a case

• Compiler issues inexhaustive pattern-match warning

2. You can’t duplicate a case

• Compiler issues unused match case warning

3. You can’t get an exception

• Can’t do something like List.hd []

4. Pattern matching leads to elegant, concise, beautiful
code

18

Lists and Recursion

• Lists have a recursive structure
• most functions over lists will be recursive

• Type of length:
• ‘a list -> int

let rec length l = match l with

 [] -> 0

 | (_::t) -> 1 + (length t)

19

More Examples

• sum l (* sum of elts in l *)

let rec sum l =

 match l with

 [] -> 0

 | (x::xs) -> x + (sum xs)

20

More Examples

• negate l (* negate elements in list *)

 let rec negate l =

 match l with

 [] -> []

 | (x::xs) -> (-x) :: (negate xs)

21

More Examples

• last l (* last element of l *)

let rec last l =

 match l with

 [x] -> x

 | (x::xs) -> last xs

22

More Examples

• append two lists l m

let rec append l m =

 match l with

 [] -> m

 | (x::xs) -> x::(append xs m)

23

More Examples

• rev l (* reverse list*)

let rec rev l =

 match l with

 [] -> []

 | (x::xs) -> append (rev xs) (x::[])

• rev takes O(n2) time. Can you do better?

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Let bindings
	Slide 3: Lists in OCaml
	Slide 4: Lists Syntax
	Slide 5: Constructing Lists: Evaluation
	Slide 6: Constructing Lists: Examples
	Slide 7: List Representation
	Slide 8: List: Typing
	Slide 9: List Typing Examples
	Slide 10: Lists are immutable
	Slide 11: Pattern Matching
	Slide 12: Pattern Matching Example
	Slide 13: Pattern Matching Example (cont.)
	Slide 14: Pattern Matching Example (cont.)
	Slide 15: "Deep" pattern matching
	Slide 16: Pattern Matching – An Abbreviation
	Slide 17: Pattern matching is AWESOME
	Slide 18: Lists and Recursion
	Slide 19: More Examples
	Slide 20: More Examples
	Slide 21: More Examples
	Slide 22: More Examples
	Slide 23: More Examples

