CMSC 330:
Organization of Programming Languages

Lists and Pattern Matching

Spring 2026

Let bindings

We use let to bind name (identifier) to a value:

let x = 100;; (*xisanimmutable binding 100 *)
val x : int = 100

Since functions are values, just like ints or strings, letis
also used to define functions:

let add x y = x + y;;
val add : int -> int -> int

Lists in OCaml

* The basic data structure in Ocaml
* Lists can be of arbitrary length
* Implemented as a linked data structure

* Lists must be homogeneous
 All elements have the same type

» Operations
 Construct lists
 Destruct them via pattern matching

3

Lists Syntax

 [] isthe empty list (pronounced “nil”)

e el::e2prependselement eltoliste2
— elisthe head, e2is the tail

e [el;e2;..;en] issyntactic sugarforel: :e2::..::

Examples
3::[1] (* [3] *)
2::(3::11) (* [2; 3] *)
[1; 2; 3] (* 1::(2::(3::[1)) *)

4

en. .

[]

Constructing Lists: Evaluation

Evaluation
* [] isavalue

e [el;..;en] evaluatestoalistof [v1;..;vn]
* Where
el > vli,

[J
...,

‘en= vn

Constructing Lists: Examples

.. operator appends a single item to the front of another list.

let y = [1; 141; 1+41+41]
let x = 4::y ;;
let z = 5::y ;>
let m = “hello”::"bob”::[1,;

List Representation

* A nonempty list is a pair (element, rest of list).

* Alist is either
* The empty list []
» Or a pair consisting of an element and a list

* [1;2;3] is represented as:

List: Typing

[1: '"a 1list (* emptylist *)

Cons:

I'Fe;: T I' - ey : 7 list

I'-eq ::eq: 7 list

Ifel: tande2: tlistthenel::e2:tlist

List Typing Examples

let
let
let
let

let

T 838 B K

"

0::[1;2;3]
[1:7

[[1],[2;3]11;;

(* int list *)

(*

‘a list ¥*)
(*int list list ¥*)

["apple"; "banana"; "watermelon"];;

[1;"world"]

4

°
4

(* type error ¥*)

Lists are immutable

e Lists are immutable in Ocaml.
« Cannot change an element of a list.
* Instead, create new lists from existing ones

let x

[1;2;3;4];;

X

let y = 5::x%x;; Y
let =z 6::x%x;; z //////
————{6

Pattern Matching

 To pull lists apart, use the match construct

« Syntax
match e with
| pl -> el
| ..
| pn -> en

 pl...pnare patterns

« el...enare branch expressions

11

Pattern Matching Example

let is empty 1 =
match 1 with
[] > true
| (h::t) -> false

» Example runs
* is empty [] (* true *)
* is empty [1l] (* false ¥*)
* is empty [1;2] (* false *)

12

Pattern Matching Example (cont.)

let hd 1
match 1 with

* Example runs

*hd
*hd
*hd
*hd

(h::t) -> h

[1;2;3](* 1 *)

[2;3]
[3]
[]

(* 2 *)
(* 3 *)
(* Exception: Match failure ¥*)

13

Pattern Matching Example (cont.)

let neg n = let is empty 1 =
match n with match 1 with
| true-> false [] -> true
| -> false
| -> true —

 Anunderscore _is a wildcard pattern. It matches anything

14

"Deep” pattern matching

* a: :bmatches lists with at least one element
* a:: [] matches lists with exactly one element
* a::b::[] matches lists with exactly two elements

*a::b::c::dmatches lists with at least three elements

15

Pattern Matching — An Abbreviation

* If there is only one pattern, then

let £ x = match x with p -> e

Is shorthand for
let £ p

I
®

* Example:

let fst pair =
match pair with
| (x,) -> x;;

let fst (x,)

16

Pattern matching is AWESOME

1. You can't forget a case
« Compiler issues inexhaustive pattern-match warning

2. You can’t duplicate a case
« Compiler issues unused match case warning

3. You can’t get an exception
« Can'’t do something like List.hd []

4. Pattern matching leads to elegant, concise, beautiful
code

17

Lists and Recursion

e Lists have a recursive structure

* most functions over lists will be recursive

[]

-> 0

let rec length 1

match 1 with

(_::t) > 1 + (length t)

* Type of length:

e ‘a list

->

int

18

More Examples

e sum 1 (* sum of elts in 1 *)

let rec sum 1 =
match 1 with
[] >0
| (x::xs) -> x + (sum xs)

19

More Examples

* negate 1 (* negate elements in list *)

let rec negate 1 =
match 1 with

[1 -> []

| (x::xs) -> (-x) :: (negate xs)

20

More Examples

e last 1 (* last element of 1 ¥*)

let rec last 1 =
match 1 with
[x] -> x
| (x::xs) -> last xs

21

More Examples

*append two lists 1 m

let rec append 1 m =
match 1 with
[] > m
| (x::xs) -> x:: (append xs m)

22

More Examples

erev 1 (* reverse list¥*)

let rec rev 1 =
match 1 with

[1 -> [1]
| (x::xs) -> append (rev xs) (x::[])

* rev takes O(n?) time. Can you do better?

23

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Let bindings
	Slide 3: Lists in OCaml
	Slide 4: Lists Syntax
	Slide 5: Constructing Lists: Evaluation
	Slide 6: Constructing Lists: Examples
	Slide 7: List Representation
	Slide 8: List: Typing
	Slide 9: List Typing Examples
	Slide 10: Lists are immutable
	Slide 11: Pattern Matching
	Slide 12: Pattern Matching Example
	Slide 13: Pattern Matching Example (cont.)
	Slide 14: Pattern Matching Example (cont.)
	Slide 15: "Deep" pattern matching
	Slide 16: Pattern Matching – An Abbreviation
	Slide 17: Pattern matching is AWESOME
	Slide 18: Lists and Recursion
	Slide 19: More Examples
	Slide 20: More Examples
	Slide 21: More Examples
	Slide 22: More Examples
	Slide 23: More Examples

