CMSC 330:
Organization of Programming Languages

Course Logistics

CMSC330 Fall 2025

Course Goals

» Describe and compare programming language features

» Learn some fundamental concepts of Programming
Languages

« Choose the right language for the job

* Write better code
- Code that is shorter, more efficient, with fewer bugs

 |n short:

- Become a better programmer with a better
understanding of your tools.

About Me

e | am a Uyghur. Google Uyghur to learn more.

e |joined UMD CS in 2015. CMSC330 is my favorite class. |
taught CMSC330 every semester from 2015 to 2021.

What about you?

Ask people on both sides of you
Name

Hometown

Classes they are taking?

o
o
o
e Favorite programming language

Course Activities

« Learn different types of languages

» Learn different language features
- Programming patterns repeat between languages

« Study how languages are specified
- Syntax, Semantics — mathematical formalisms

« Study how languages are implemented
- Parsing via regular expressions (automata theory) and context
free grammars

- Mechanisms such as closures, tail recursion, type checking,
lazy evaluation, garbage collection, ...

Syllabus

* Functional programming (OCaml)

« Regular expressions & finite automata

« Context-free grammars & parsing

« Lambda Calculus and Operational Semantics

« Safe, “zero-cost abstraction” programming (Rust)

* Scoping, type systems, parameter passing, comparing
language styles; other topics

Calendar / Course Overview

 Tests
4 quizzes, 2 midterm exams, 1 final exam

Do not schedule your interviews on exam dates

* Lecture quizzes
Weekly ELMS quizzes

* Projects
- Project 0 — Out already!
Project 1 - OCaml Basics
Project 2,3,4,5 OCaml
Project 6,7 Rust projects

« Syllabus: https://bakalian.cs.umd.edu/cmsc330/syllabus

Discussion Sections

» Discussions will be in-person

 Discussion sections will deepen understanding of
concepts introduced in lecture

« Oftentimes discussion section will consist of programming
exercises

* There will also be be quizzes, and some lecture material
In discussion section

Project Grading

* Projects will be graded using the Gradescope
- Software versions on these machines are canonical

* Develop programs on your own machine

- Your responsibility to ensure programs run correctly on
gradescope

« See web page for OCaml, Rust versions we use, if you
want to install at home

Rules and Reminders

* Lectures will be recorded.
» Use lecture notes as your text

- You will be responsible for everything in the notes, even if it is not
directly covered in class!

« Keep ahead of your work

- Get help as soon as you need it
- Office hours, Piazza (email as a last resort)

* Avoid distractions, to yourself and your classmates
- Keep cell phones quiet

10

Academic Integrity

 All written work (including projects) done on your own
- Do not copy code from other students
- Do not copy code from the web
- Do not post your code on the web

« Cheaters are caught by auto-comparing code

« Work together on high-level project questions
- Discuss approach, pointers to resources: OK
- Do not look at/describe another student’s code
- If unsure, ask an instructor!

« Work together on practice exam questions

11

About the Final Letter Grades

Each point corresponds to about 30 students. Typically, there are
more than 10 students between your grade and the cutoff. Please do
not email me requesting a grade bump.

65 =

— 900 student

95 -

CMSC 330:
Organization of Programming Languages

Overview

13

Plethora of programming languages

 LISP: (defun double (x) (* x 2))
* Prolog: size([],0).

size([H|T],N) :- size(T,Nl1l), N is N1+1.
« OCaml: List.iter (fun x -> print string x)

[“hello, ”; s; "'\n”]

Smalltalk: (#(1 2 3 4 5) select:[:i | i even])

14

All Languages are (sort of) Equivalent

« A language is Turing complete if it can compute any
function computable by a Turing Machine

« Essentially all general-purpose programming languages
are Turing complete

- |.e., any program can be written in any programming language

* Therefore this course is useless?!
- Learn one programming language, always use it

15

Studying Programming Languages

Will make you a better programmer
- Programming is a human activity
Features of a language make it easier or harder to program for a
specific application
|deas or features from one language translate to, or are later
incorporated by, another
Many “design patterns” in Java are functional programming
techniques
Learn to distinguish surface differences from deeper principles
Using the right programming language or style for a problem
may make programming:
Easier, faster, less error-prone

Studying Programming Languages

 Become better at learning new languages

- A language not only allows you to express an idea, it also shapes
how you think when conceiving it

- You may need to learn a new (or old) language
Paradigms and fads change quickly in CS

Also, may need to support or extend legacy systems

17

Changing Language Goals

« 1950s-60s — Compile programs to execute efficiently

- Language features based on hardware concepts
Integers, reals, goto statements

- Programmers cheap; machines expensive
Computation was the primary constrained resource

Programs had to be efficient because machines weren't
- Note: this still happens today, just not as pervasively

18

Matrix-Multiply Speedup vs. Pure Python

62506

6727

Changing Language Goals .

£

a7

 Today T l/

Pythan C paralel loops RSOy SIMD
Cp Rzt o n InSErucions

Language features based on design concepts
» Encapsulation, records, inheritance, functionality, assertions

Machines cheap; programmers expensive
> Scripting languages are slow(er), but run on fast machines

> They’ve become very popular because they ease the programming
process

The constrained resource changes frequently
» Communication, effort, power, privacy, ...
> Future systems and developers will have to be nimble

19

Language Attributes to Consider

« Syntax
- What a program looks like

« Semantics
- What a program means (mathematically), i.e., what it computes

« Paradigm and Pragmatics
- How programs tend to be expressed in the language

* Implementation
- How a program executes (on a real machine)

20

Syntax

* The keywords, formatting expectations, and structure of
the language
- Differences between languages usually superficial

> C/ Java if(x==1){...}else{... }
> Ruby ifx==1...else...end
> OCaml if (x=1)then ... else ...
- Differences initially jarring; overcome with experience

« Concepts such as regular expressions, context-free
grammars, and parsing handle language syntax

21

Semantics

« What does a program mean”? What does it compute?
- Same syntax may have different semantics in different

languages!
Physical Equality | Structural Equality
Java a== a.equals(b)
C a== *a=="b
Ruby |a.equal?(b) a==
OCaml |a == a=b

N

%

« Can specify semantics informally (in prose) or formally
(in mathematics)

22

Formal (Mathematical) Semantics

* What do my programs mean?

let rec fact n = let fact n =
if n =0 then 1 let rec aux i j =
else n * (fact n-1) if i = 0 then j
else aux (i-1) (j*i) in
aux n 1

* Both OCaml functions implement “the factorial function.”
How do | know this? Can | prove it?

- Key ingredient: a mathematical way of specifying what programs
do, i.e., their semantics

- Doing so depends on the semantics of the language

23

Paradigm

 There are many ways to compute something

- Some differences are superficial
> For loop vs. while loop

- Some are more fundamental
> Recursion vs. looping
» Mutation vs. functional update
> Manual vs. automatic memory management

« Language’s paradigm favors some computing methods
over others. This class:
- Imperative - Resource-controlled (zero-cost)
- Functional - Scripting/dynamic

25

Defining Paradigm: Elements of PLs

* Important features « Declarations
- Regular expression handling - Explicit
- Objects - Implicit

> Inheritance

- Closures/code blocks « Type system

- Immutability - Static
. Tail calls | - Polymorphism
- Pattern matching - Inference
> Unification D '
- Abstract types e
- Type safety

- Garbage collection

26

Imperative Languages

« Also called procedural or von Neumann

» Building blocks are procedures and statements

- Programs that write to memory are the norm
int x = 0;

while (x < y) x=x + 1;

- FORTRAN (1954)
- Pascal (1970)
- C (1971)

27

Functional (Applicative) Languages

« Favors immutability

- Variables are never re-defined
- New variables a function of old ones (exploits recursion)

* Functions are higher-order
- Passed as arguments, returned as results

- LISP (1958)

- ML (1973)

- Scheme (1975)
- Haskell (1987)
- OCaml (1987)

28

OCaml|

« A (mostly-)functional language

- Has objects, but won't discuss (much)
- Developed in 1987 at INRIA in France
- Dialect of ML (1973)

« Natural support for pattern matching
- (Generalizes switch/if-then-else — Very elegant

» Has full featured module system
- Much richer than interfaces in Java or headers in C

 Includes type inference
- Ensures compile-time type safety, no annotations

29

Zero-cost Abstractions in Rust

« A key motivator for writing code in C and C++ is the low
(or zero) cost of the abstractions use
- Data is represented minimally; no metadata required
- Stack-allocated memory can be freed quickly

- Malloc/free maximizes control — no GC or mechanisms to support
it are needed

 But no-cost abstractions in C/C++ are insecure

* Rust language has safe, zero-cost abstractions
- Type system enforces use of ownership and lifetimes
- Used to build real applications — web browsers, etc.

31

Implementation

How do we implement a programming language”?

Put another way: How do we get program P in some language
L to run?

Two broad ways
Compilation
Interpretation

37

Compilation

def greet(s)
print("Hello, ")

D imt(s) , source Compiler target
print("'\n”) program program
end
. Target
input program |+ output

-_—

11230452
23230456
01200312

———

“Hello, world!”

« Source program translated (“compiled”) to another

language

- Traditionally: directly executable machine code

> gcc, clang
Bytecode, Portable Code

> Javac

Interpretation

def greet(s)
print("Hello, ")
print(s)
print("!'\n”)

end

source

> program >

Intepreter

—» output ———»

“world”

——— input

“Hello, world!”

* Interpreter executes each instruction in source
program one step at a time
No separate executable

39

Summary

 Programming languages vary in their
- Syntax
- Semantics
- Style/paradigm and pragmatics
- Implementation
« They are designed for different purposes

- And goals change as the computing landscape changes, e.g., as
programmer time becomes more valuable than machine time

» |deas from one language appear in others

49

OCaml Compiler

OCaml programs can be compiled using ocamic

- Produces .cmo (“compiled object”) and .cmi (“compiled
interface”) files
- We'll talk about interface files later

- By default, also links to produce executable a.out
- Use -0 to set output file name
- Use -c to compile only to .cmo/.cmi and not to link

Can also compile with ocamlopt
- Produces .cmx files, which contain native code
- Faster, but not platform-independent (or as easily debugged)

OCaml Compiler

Compiling and running the following small program:

hello.ml:
(* A small OCaml program ¥*)
print string "Hello world!'\n";;

% ocamlc hello.ml OCaml interpreter
% ./a.out % ocaml hello.ml
Hello world! Hello world!

OCaml Compiler: Multiple Files

main.ml;

let main () =
print int (Util.add 10 20);
print string "\n"

let () = main ()

util.ml;

let add x y = x+y

« Compile both together (produces a.out)

ocamlc util.ml main.ml

* Or compile separately
ocamlc -c util.ml
ocamlc util.cmo main.ml

 To execute
./a.out

OCaml Top-level

- The top-level is a read-eval-print loop (REPL) for OCaml
- Start the top-level via the ocaml command

#ocaml

% OCaml version 4.14.1

print string ”“Hello world!'\n";;
Hello world!

utop is an alternative top-level; improves on ocaml
To exit the top-level, type D (Control D) or call the exit O

exit 0;;

OCaml Top-level

Expressions can be typed and evaluated at the top-level

3 + 4;;
- : int =7 G

let x = 37;; v\~gives type and value of each expr
val x : int = 37
“-" = “the expression you just typed”

x;; - =
- : int = 37

let y = 5;

I~

val y : int 5
let z = 5 + x;;
val z : int = 42

S unit = “no interesting value” (like void)
print int z;;<‘—___,___————

42- : unit = ()

print_string "Colorless green ideas sleep furiously";;
Colorless green ideas sleep furiously- : unit = ()

print _int "Colorless green ideas sleep furiously";;
This expression has type string but is here used with type int

Loading Code Files into the Top-level

File hello.ml :

print string "Hello world!'\n";;

Load a file into top-level
#use “filename.ml”

Example: < #use processes a file a line at a time
#use "hello.ml";;

Hello world!
- : unit = ()

#

OPAM: OCaml Package Manager

opam is the package manager for OCam|
- Manages libraries and different compiler installations

- You should install the following packages with opam
- ounit, a testing framework similar to minitest
- utop, a top-level interface
- dune, a build system for larger projects

Project Builds with dune

. Use dune to compile projects---automatically finds
dependencies, invokes compiler and linker
. Define a dune file, similar to a Makefile:
dune- Indicates that an

— —— executable (rather than a
library) is to be built

@

(executable «
(name main))

Name of main file
(entry point)

dune build main.exe
_build/default/main.exe
0

%
%

w

o°

Check out https://medium.com/@bobbypriambodo/starting-an-ocaml-
app-project-using-dune-d4f74e291de8

Dune commands

If defined, run a project’s test suite:
dune runtest

Load the modules defined in src/ into the utop top-
level interface:

dune utop src

- utop is a replacement for ocaml that includes
dependent files, so they don’t have be be #loaded

A Note on :;

;; ends an expression in the top-level of OCaml
- Use it to say: “Give me the value of this expression”
- Not used in the body of a function

- Not needed after each function definition
- Though for now it won’t hurt if used there

There is also a single semi-colon ; in OCaml
- But we won'’t need it for now

- It’s only useful when programming imperatively, i.e.,
with side effects
- Which we won'’t do for a while

	Slide 1
	Slide 2
	Slide 3: About Me
	Slide 4: What about you?
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: About the Final Letter Grades
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Studying Programming Languages
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 31
	Slide 37
	Slide 38
	Slide 39
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

