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Course Goals

• Describe and compare programming language features

• Learn some fundamental concepts of Programming 

Languages

• Choose the right language for the job

• Write better code

∙ Code that is shorter, more efficient, with fewer bugs

• In short:

∙ Become a better programmer with a better 

understanding of your tools.
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About Me

● I am a Uyghur. Google Uyghur to learn more. 

● I joined UMD CS in 2015. CMSC330 is my favorite class. I 

taught CMSC330 every semester from 2015 to 2021.



What about you?

Ask people on both sides of you

● Name

● Hometown

● Classes they are taking? 

● Favorite programming language



Course Activities

• Learn different types of languages

• Learn different language features

∙ Programming patterns repeat between languages

• Study how languages are specified

∙ Syntax, Semantics — mathematical formalisms

• Study how languages are implemented

∙ Parsing via regular expressions (automata theory) and context 

free grammars

∙ Mechanisms such as closures, tail recursion, type checking, 

lazy evaluation, garbage collection, …
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Syllabus

• Functional programming (OCaml)

• Regular expressions & finite automata

• Context-free grammars & parsing

• Lambda Calculus and Operational Semantics

• Safe, “zero-cost abstraction” programming (Rust)

• Scoping, type systems, parameter passing, comparing 

language styles; other topics
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Calendar / Course Overview

• Tests
∙ 4 quizzes, 2 midterm exams, 1 final exam
∙ Do not schedule your interviews on exam dates 

• Lecture quizzes
∙ Weekly ELMS quizzes

• Projects
∙ Project 0 – Out already!
∙ Project 1 - OCaml Basics
∙ Project 2,3,4,5 OCaml
∙ Project 6,7 Rust projects

• Syllabus: https://bakalian.cs.umd.edu/cmsc330/syllabus
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Discussion Sections

• Discussions will be in-person

• Discussion sections will deepen understanding of 

concepts introduced in lecture

• Oftentimes discussion section will consist of programming 

exercises

• There will also be be quizzes, and some lecture material 

in discussion section
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Project Grading

• Projects will be graded using the Gradescope

∙ Software versions on these machines are canonical

• Develop programs on your own machine

∙ Your responsibility to ensure programs run correctly on 

gradescope

• See web page for OCaml, Rust versions we use, if you 

want to install at home
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Rules and Reminders

• Lectures will be recorded.

• Use lecture notes as your text

∙ You will be responsible for everything in the notes, even if it is not 

directly covered in class!

• Keep ahead of your work

∙ Get help as soon as you need it 

∙ Office hours, Piazza (email as a last resort)

• Avoid distractions, to yourself and your classmates

∙ Keep cell phones quiet

10



Academic Integrity

• All written work (including projects) done on your own

∙ Do not copy code from other students

∙ Do not copy code from the web

∙ Do not post your code on the web

• Cheaters are caught by auto-comparing code

• Work together on high-level project questions

∙ Discuss approach, pointers to resources: OK

∙ Do not look at/describe another student’s code

∙ If unsure, ask an instructor!

• Work together on practice exam questions

11



About the Final Letter Grades

65

95

900 student

• Each point corresponds to about 30 students. Typically, there are 

more than 10 students between your grade and the cutoff. Please do 

not email me requesting a grade bump.



CMSC 330:  
Organization of Programming Languages

Overview
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Plethora of programming languages

• LISP: (defun double (x) (* x 2))

• Prolog: size([],0). 

size([H|T],N) :- size(T,N1), N is N1+1.

• OCaml: List.iter (fun x -> print_string x)

[“hello, ”; s; "!\n”]

• Smalltalk: ( #( 1 2 3 4 5 ) select:[:i | i even ] )
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All Languages are (sort of) Equivalent

• A language is Turing complete if it can compute any 

function computable by a Turing Machine

• Essentially all general-purpose programming languages 

are Turing complete

∙ I.e., any program can be written in any programming language

• Therefore this course is useless?!

∙ Learn one programming language, always use it
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Studying Programming Languages

• Will make you a better programmer
• Programming is a human activity

• Features of a language make it easier or harder to program for a 

specific application

• Ideas or features from one language translate to, or are later 

incorporated by, another
• Many “design patterns” in Java are functional programming 

techniques

• Learn to distinguish surface differences from deeper principles

• Using the right programming language or style for a problem 

may make programming:
• Easier, faster, less error-prone



Studying Programming Languages

• Become better at learning new languages

∙ A language not only allows you to express an idea, it also shapes 

how you think when conceiving it

∙ You may need to learn a new (or old) language

Paradigms and fads change quickly in CS

Also, may need to support or extend legacy systems
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Changing Language Goals

• 1950s-60s – Compile programs to execute efficiently

∙ Language features based on hardware concepts

Integers, reals, goto statements

∙ Programmers cheap; machines expensive

Computation was the primary constrained resource

Programs had to be efficient because machines weren’t

∙ Note: this still happens today, just not as pervasively
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Changing Language Goals

• Today

∙ Language features based on design concepts
⮚ Encapsulation, records, inheritance, functionality, assertions

∙ Machines cheap; programmers expensive
⮚ Scripting languages are slow(er), but run on fast machines

⮚ They’ve become very popular because they ease the programming 

process

∙ The constrained resource changes frequently

⮚ Communication, effort, power, privacy, …

⮚ Future systems and developers will have to be nimble
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Language Attributes to Consider

• Syntax

∙ What a program looks like

• Semantics

∙ What a program means (mathematically), i.e., what it computes

• Paradigm and Pragmatics

∙ How programs tend to be expressed in the language 

• Implementation

∙ How a program executes (on a real machine)
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Syntax

• The keywords, formatting expectations, and structure of 

the language

∙ Differences between languages usually superficial

⮚ C / Java if (x == 1) { … } else { … }

⮚ Ruby if x == 1 … else … end

⮚ OCaml if (x = 1) then … else …

∙ Differences initially jarring; overcome with experience

• Concepts such as regular expressions, context-free 

grammars, and parsing handle language syntax
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Semantics

• What does a program mean? What does it compute?

∙ Same syntax may have different semantics in different 

languages!

• Can specify semantics informally (in prose) or formally

(in mathematics)

Physical Equality Structural Equality

Java a == b a.equals(b)

C a == b *a == *b

Ruby a.equal?(b) a == b

OCaml a == b a = b



Formal (Mathematical) Semantics

• What do my programs mean?

• Both OCaml functions implement “the factorial function.”  

How do I know this?  Can I prove it?

∙ Key ingredient: a mathematical way of specifying what programs 

do, i.e., their semantics

∙ Doing so depends on the semantics of the language

let rec fact n =

if n = 0 then 1

else n * (fact n-1)

let fact n =

let rec aux i j =

if i = 0 then j

else aux (i-1) (j*i) in

aux n 1
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Paradigm

• There are many ways to compute something

∙ Some differences are superficial
⮚ For loop vs. while loop

∙ Some are more fundamental
⮚ Recursion vs. looping

⮚ Mutation vs. functional update

⮚ Manual vs. automatic memory management

• Language’s paradigm favors some computing methods 

over others. This class:

- Imperative - Resource-controlled (zero-cost)

- Functional - Scripting/dynamic



26

• Important features

∙ Regular expression handling

∙ Objects

⮚ Inheritance

∙ Closures/code blocks

∙ Immutability

∙ Tail calls

∙ Pattern matching

⮚ Unification

∙ Abstract types

∙ Garbage collection

• Declarations

∙ Explicit

∙ Implicit

• Type system

∙ Static

∙ Polymorphism

∙ Inference

∙ Dynamic

∙ Type safety

Defining Paradigm: Elements of PLs



Imperative Languages

• Also called procedural or von Neumann

• Building blocks are procedures and statements

∙ Programs that write to memory are the norm
int x = 0;

while (x < y) x = x + 1;

∙ FORTRAN (1954)

∙ Pascal (1970)

∙ C (1971)
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Functional (Applicative) Languages

• Favors immutability

∙ Variables are never re-defined

∙ New variables a function of old ones (exploits recursion)

• Functions are higher-order

∙ Passed as arguments, returned as results

∙ LISP (1958)

∙ ML (1973)

∙ Scheme (1975)

∙ Haskell (1987)

∙ OCaml (1987)
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OCaml

• A (mostly-)functional language

∙ Has objects, but won’t discuss (much)

∙ Developed in 1987 at INRIA in France

∙ Dialect of ML (1973)

• Natural support for pattern matching

∙ Generalizes switch/if-then-else – very elegant

• Has full featured module system

∙ Much richer than interfaces in Java or headers in C

• Includes type inference

∙ Ensures compile-time type safety, no annotations
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Zero-cost Abstractions in Rust

• A key motivator for writing code in C and C++ is the low 

(or zero) cost of the abstractions use

∙ Data is represented minimally; no metadata required

∙ Stack-allocated memory can be freed quickly

∙ Malloc/free maximizes control – no GC or mechanisms to support 

it are needed

• But no-cost abstractions in C/C++ are insecure

• Rust language has safe, zero-cost abstractions

∙ Type system enforces use of ownership and lifetimes

∙ Used to build real applications – web browsers, etc.
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Implementation

• How do we implement a programming language?

∙ Put another way: How do we get program P in some language 

L to run?

• Two broad ways

∙ Compilation

∙ Interpretation
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Compilation

• Source program translated (“compiled”) to another 

language

∙ Traditionally: directly executable machine code

⮚ gcc, clang

∙ Bytecode, Portable Code

⮚ Javac

def greet(s)

print("Hello, ”)

print(s)

print("!\n”)

end

11230452

23230456

01200312

…

“world” “Hello, world!”

38



Interpretation

• Interpreter executes each instruction in source 

program one step at a time

∙ No separate executable

def greet(s)

print("Hello, ”)

print(s)

print("!\n”)

end

“world”

“Hello, world!”
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Summary

• Programming languages vary in their

∙ Syntax

∙ Semantics

∙ Style/paradigm and pragmatics

∙ Implementation

• They are designed for different purposes

∙ And goals change as the computing landscape changes, e.g., as 

programmer time becomes more valuable than machine time

• Ideas from one language appear in others
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OCaml Compiler

∙ OCaml programs can be compiled using ocamlc

− Produces .cmo (“compiled object”) and .cmi (“compiled 

interface”) files
∙ We’ll talk about interface files later

− By default, also links to produce executable a.out
∙ Use -o to set output file name

∙ Use -c to compile only to .cmo/.cmi and not to link

∙ Can also compile with ocamlopt

− Produces .cmx files, which contain native code

− Faster, but not platform-independent (or as easily debugged)



OCaml Compiler

∙ Compiling and running the following small program:

% ocamlc hello.ml

% ./a.out

Hello world!

(* A small OCaml program *)

print_string "Hello world!\n";;

hello.ml:

OCaml interpreter

% ocaml hello.ml

Hello world!



OCaml Compiler: Multiple Files

let main () =

print_int (Util.add 10 20);

print_string "\n"

let () = main ()

main.ml:

let add x y = x+y

util.ml:

• Compile both together (produces a.out)
ocamlc util.ml main.ml

• Or compile separately
ocamlc –c util.ml

ocamlc util.cmo main.ml

• To execute
./a.out



OCaml Top-level

∙ The top-level is a read-eval-print loop (REPL) for OCaml

∙ Start the top-level via the ocaml command

#ocaml

% OCaml version 4.14.1

print_string ”Hello world!\n";;

Hello world!

- : unit = ()

∙ utop is an alternative top-level; improves on ocaml
∙ To exit the top-level,  type ^D (Control D) or call the exit 0

exit 0;;



Expressions can be typed and evaluated at the top-level
# 3 + 4;;

- : int = 7

# let x = 37;;

val x : int = 37

# x;;

- : int = 37

# let y = 5;;

val y : int = 5

# let z = 5 + x;;

val z : int = 42

# print_int z;;

42- : unit = ()

# print_string "Colorless green ideas sleep furiously";;

Colorless green ideas sleep furiously- : unit = ()

# print_int "Colorless green ideas sleep furiously";;

This expression has type string but is here used with type int

gives type and value of each expr

unit = “no interesting value” (like void)

“-” = “the expression you just typed”

OCaml Top-level



Loading Code Files into the Top-level

∙ Load a file into top-level

#use “filename.ml”

∙ Example:

#  #use "hello.ml";;

Hello world!

- : unit = ()

#

File hello.ml : 

print_string "Hello world!\n";;

#use processes a file a line at a time



OPAM: OCaml Package Manager

∙ opam is the package manager for OCaml

− Manages libraries and different compiler installations

∙ You should install the following packages with opam

− ounit, a testing framework similar to minitest

− utop, a top-level interface

− dune, a build system for larger projects



Project Builds with dune

● Use dune to compile projects---automatically finds 

dependencies, invokes compiler and linker

● Define a dune file, similar to a Makefile: 

% dune build main.exe

% _build/default/main.exe

30

%

(executable

(name main))

dune:
Indicates that an 

executable (rather than a 

library) is to be built

Name of main file 

(entry point)

Check out https://medium.com/@bobbypriambodo/starting-an-ocaml-

app-project-using-dune-d4f74e291de8



Dune commands

∙ If defined, run a project’s test suite:

dune runtest

∙ Load the modules defined in src/ into the utop top-

level interface:

dune utop src

- utop is a replacement for ocaml that includes 

dependent files, so they don’t have be be #loaded



A Note on ;;

∙ ;; ends an expression in the top-level of OCaml

− Use it to say:  “Give me the value of this expression”

− Not used in the body of a function

− Not needed after each function definition

∙ Though for now it won’t hurt if used there

∙ There is also a single semi-colon ; in OCaml

− But we won’t need it for now

− It’s only useful when programming imperatively, i.e., 

with side effects
∙ Which we won’t do for a while
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