
CMSC 330:
Organization of Programming Languages

Course Logistics

1CMSC330 Fall 2025

Course Goals

• Describe and compare programming language features

• Learn some fundamental concepts of Programming

Languages

• Choose the right language for the job

• Write better code

∙ Code that is shorter, more efficient, with fewer bugs

• In short:

∙ Become a better programmer with a better

understanding of your tools.

2

About Me

● I am a Uyghur. Google Uyghur to learn more.

● I joined UMD CS in 2015. CMSC330 is my favorite class. I

taught CMSC330 every semester from 2015 to 2021.

What about you?

Ask people on both sides of you

● Name

● Hometown

● Classes they are taking?

● Favorite programming language

Course Activities

• Learn different types of languages

• Learn different language features

∙ Programming patterns repeat between languages

• Study how languages are specified

∙ Syntax, Semantics — mathematical formalisms

• Study how languages are implemented

∙ Parsing via regular expressions (automata theory) and context

free grammars

∙ Mechanisms such as closures, tail recursion, type checking,

lazy evaluation, garbage collection, …

5

Syllabus

• Functional programming (OCaml)

• Regular expressions & finite automata

• Context-free grammars & parsing

• Lambda Calculus and Operational Semantics

• Safe, “zero-cost abstraction” programming (Rust)

• Scoping, type systems, parameter passing, comparing

language styles; other topics

6

Calendar / Course Overview

• Tests
∙ 4 quizzes, 2 midterm exams, 1 final exam
∙ Do not schedule your interviews on exam dates

• Lecture quizzes
∙ Weekly ELMS quizzes

• Projects
∙ Project 0 – Out already!
∙ Project 1 - OCaml Basics
∙ Project 2,3,4,5 OCaml
∙ Project 6,7 Rust projects

• Syllabus: https://bakalian.cs.umd.edu/cmsc330/syllabus

7

Discussion Sections

• Discussions will be in-person

• Discussion sections will deepen understanding of

concepts introduced in lecture

• Oftentimes discussion section will consist of programming

exercises

• There will also be be quizzes, and some lecture material

in discussion section

8

Project Grading

• Projects will be graded using the Gradescope

∙ Software versions on these machines are canonical

• Develop programs on your own machine

∙ Your responsibility to ensure programs run correctly on

gradescope

• See web page for OCaml, Rust versions we use, if you

want to install at home

9

Rules and Reminders

• Lectures will be recorded.

• Use lecture notes as your text

∙ You will be responsible for everything in the notes, even if it is not

directly covered in class!

• Keep ahead of your work

∙ Get help as soon as you need it

∙ Office hours, Piazza (email as a last resort)

• Avoid distractions, to yourself and your classmates

∙ Keep cell phones quiet

10

Academic Integrity

• All written work (including projects) done on your own

∙ Do not copy code from other students

∙ Do not copy code from the web

∙ Do not post your code on the web

• Cheaters are caught by auto-comparing code

• Work together on high-level project questions

∙ Discuss approach, pointers to resources: OK

∙ Do not look at/describe another student’s code

∙ If unsure, ask an instructor!

• Work together on practice exam questions

11

About the Final Letter Grades

65

95

900 student

• Each point corresponds to about 30 students. Typically, there are

more than 10 students between your grade and the cutoff. Please do

not email me requesting a grade bump.

CMSC 330:
Organization of Programming Languages

Overview

13

Plethora of programming languages

• LISP: (defun double (x) (* x 2))

• Prolog: size([],0).

size([H|T],N) :- size(T,N1), N is N1+1.

• OCaml: List.iter (fun x -> print_string x)

[“hello, ”; s; "!\n”]

• Smalltalk: (#(1 2 3 4 5) select:[:i | i even])

14

All Languages are (sort of) Equivalent

• A language is Turing complete if it can compute any

function computable by a Turing Machine

• Essentially all general-purpose programming languages

are Turing complete

∙ I.e., any program can be written in any programming language

• Therefore this course is useless?!

∙ Learn one programming language, always use it

15

Studying Programming Languages

• Will make you a better programmer
• Programming is a human activity

• Features of a language make it easier or harder to program for a

specific application

• Ideas or features from one language translate to, or are later

incorporated by, another
• Many “design patterns” in Java are functional programming

techniques

• Learn to distinguish surface differences from deeper principles

• Using the right programming language or style for a problem

may make programming:
• Easier, faster, less error-prone

Studying Programming Languages

• Become better at learning new languages

∙ A language not only allows you to express an idea, it also shapes

how you think when conceiving it

∙ You may need to learn a new (or old) language

Paradigms and fads change quickly in CS

Also, may need to support or extend legacy systems

17

Changing Language Goals

• 1950s-60s – Compile programs to execute efficiently

∙ Language features based on hardware concepts

Integers, reals, goto statements

∙ Programmers cheap; machines expensive

Computation was the primary constrained resource

Programs had to be efficient because machines weren’t

∙ Note: this still happens today, just not as pervasively

18

Changing Language Goals

• Today

∙ Language features based on design concepts
⮚ Encapsulation, records, inheritance, functionality, assertions

∙ Machines cheap; programmers expensive
⮚ Scripting languages are slow(er), but run on fast machines

⮚ They’ve become very popular because they ease the programming

process

∙ The constrained resource changes frequently

⮚ Communication, effort, power, privacy, …

⮚ Future systems and developers will have to be nimble

19

Language Attributes to Consider

• Syntax

∙ What a program looks like

• Semantics

∙ What a program means (mathematically), i.e., what it computes

• Paradigm and Pragmatics

∙ How programs tend to be expressed in the language

• Implementation

∙ How a program executes (on a real machine)

20

21

Syntax

• The keywords, formatting expectations, and structure of

the language

∙ Differences between languages usually superficial

⮚ C / Java if (x == 1) { … } else { … }

⮚ Ruby if x == 1 … else … end

⮚ OCaml if (x = 1) then … else …

∙ Differences initially jarring; overcome with experience

• Concepts such as regular expressions, context-free

grammars, and parsing handle language syntax

22

Semantics

• What does a program mean? What does it compute?

∙ Same syntax may have different semantics in different

languages!

• Can specify semantics informally (in prose) or formally

(in mathematics)

Physical Equality Structural Equality

Java a == b a.equals(b)

C a == b *a == *b

Ruby a.equal?(b) a == b

OCaml a == b a = b

Formal (Mathematical) Semantics

• What do my programs mean?

• Both OCaml functions implement “the factorial function.”

How do I know this? Can I prove it?

∙ Key ingredient: a mathematical way of specifying what programs

do, i.e., their semantics

∙ Doing so depends on the semantics of the language

let rec fact n =

if n = 0 then 1

else n * (fact n-1)

let fact n =

let rec aux i j =

if i = 0 then j

else aux (i-1) (j*i) in

aux n 1

23

25

Paradigm

• There are many ways to compute something

∙ Some differences are superficial
⮚ For loop vs. while loop

∙ Some are more fundamental
⮚ Recursion vs. looping

⮚ Mutation vs. functional update

⮚ Manual vs. automatic memory management

• Language’s paradigm favors some computing methods

over others. This class:

- Imperative - Resource-controlled (zero-cost)

- Functional - Scripting/dynamic

26

• Important features

∙ Regular expression handling

∙ Objects

⮚ Inheritance

∙ Closures/code blocks

∙ Immutability

∙ Tail calls

∙ Pattern matching

⮚ Unification

∙ Abstract types

∙ Garbage collection

• Declarations

∙ Explicit

∙ Implicit

• Type system

∙ Static

∙ Polymorphism

∙ Inference

∙ Dynamic

∙ Type safety

Defining Paradigm: Elements of PLs

Imperative Languages

• Also called procedural or von Neumann

• Building blocks are procedures and statements

∙ Programs that write to memory are the norm
int x = 0;

while (x < y) x = x + 1;

∙ FORTRAN (1954)

∙ Pascal (1970)

∙ C (1971)

27

Functional (Applicative) Languages

• Favors immutability

∙ Variables are never re-defined

∙ New variables a function of old ones (exploits recursion)

• Functions are higher-order

∙ Passed as arguments, returned as results

∙ LISP (1958)

∙ ML (1973)

∙ Scheme (1975)

∙ Haskell (1987)

∙ OCaml (1987)

28

OCaml

• A (mostly-)functional language

∙ Has objects, but won’t discuss (much)

∙ Developed in 1987 at INRIA in France

∙ Dialect of ML (1973)

• Natural support for pattern matching

∙ Generalizes switch/if-then-else – very elegant

• Has full featured module system

∙ Much richer than interfaces in Java or headers in C

• Includes type inference

∙ Ensures compile-time type safety, no annotations

29

Zero-cost Abstractions in Rust

• A key motivator for writing code in C and C++ is the low

(or zero) cost of the abstractions use

∙ Data is represented minimally; no metadata required

∙ Stack-allocated memory can be freed quickly

∙ Malloc/free maximizes control – no GC or mechanisms to support

it are needed

• But no-cost abstractions in C/C++ are insecure

• Rust language has safe, zero-cost abstractions

∙ Type system enforces use of ownership and lifetimes

∙ Used to build real applications – web browsers, etc.

31

Implementation

• How do we implement a programming language?

∙ Put another way: How do we get program P in some language

L to run?

• Two broad ways

∙ Compilation

∙ Interpretation

37

Compilation

• Source program translated (“compiled”) to another

language

∙ Traditionally: directly executable machine code

⮚ gcc, clang

∙ Bytecode, Portable Code

⮚ Javac

def greet(s)

print("Hello, ”)

print(s)

print("!\n”)

end

11230452

23230456

01200312

…

“world” “Hello, world!”

38

Interpretation

• Interpreter executes each instruction in source

program one step at a time

∙ No separate executable

def greet(s)

print("Hello, ”)

print(s)

print("!\n”)

end

“world”

“Hello, world!”

39

Summary

• Programming languages vary in their

∙ Syntax

∙ Semantics

∙ Style/paradigm and pragmatics

∙ Implementation

• They are designed for different purposes

∙ And goals change as the computing landscape changes, e.g., as

programmer time becomes more valuable than machine time

• Ideas from one language appear in others

49

OCaml Compiler

∙ OCaml programs can be compiled using ocamlc

− Produces .cmo (“compiled object”) and .cmi (“compiled

interface”) files
∙ We’ll talk about interface files later

− By default, also links to produce executable a.out
∙ Use -o to set output file name

∙ Use -c to compile only to .cmo/.cmi and not to link

∙ Can also compile with ocamlopt

− Produces .cmx files, which contain native code

− Faster, but not platform-independent (or as easily debugged)

OCaml Compiler

∙ Compiling and running the following small program:

% ocamlc hello.ml

% ./a.out

Hello world!

(* A small OCaml program *)

print_string "Hello world!\n";;

hello.ml:

OCaml interpreter

% ocaml hello.ml

Hello world!

OCaml Compiler: Multiple Files

let main () =

print_int (Util.add 10 20);

print_string "\n"

let () = main ()

main.ml:

let add x y = x+y

util.ml:

• Compile both together (produces a.out)
ocamlc util.ml main.ml

• Or compile separately
ocamlc –c util.ml

ocamlc util.cmo main.ml

• To execute
./a.out

OCaml Top-level

∙ The top-level is a read-eval-print loop (REPL) for OCaml

∙ Start the top-level via the ocaml command

#ocaml

% OCaml version 4.14.1

print_string ”Hello world!\n";;

Hello world!

- : unit = ()

∙ utop is an alternative top-level; improves on ocaml
∙ To exit the top-level, type ^D (Control D) or call the exit 0

exit 0;;

Expressions can be typed and evaluated at the top-level
3 + 4;;

- : int = 7

let x = 37;;

val x : int = 37

x;;

- : int = 37

let y = 5;;

val y : int = 5

let z = 5 + x;;

val z : int = 42

print_int z;;

42- : unit = ()

print_string "Colorless green ideas sleep furiously";;

Colorless green ideas sleep furiously- : unit = ()

print_int "Colorless green ideas sleep furiously";;

This expression has type string but is here used with type int

gives type and value of each expr

unit = “no interesting value” (like void)

“-” = “the expression you just typed”

OCaml Top-level

Loading Code Files into the Top-level

∙ Load a file into top-level

#use “filename.ml”

∙ Example:

#use "hello.ml";;

Hello world!

- : unit = ()

#

File hello.ml :

print_string "Hello world!\n";;

#use processes a file a line at a time

OPAM: OCaml Package Manager

∙ opam is the package manager for OCaml

− Manages libraries and different compiler installations

∙ You should install the following packages with opam

− ounit, a testing framework similar to minitest

− utop, a top-level interface

− dune, a build system for larger projects

Project Builds with dune

● Use dune to compile projects---automatically finds

dependencies, invokes compiler and linker

● Define a dune file, similar to a Makefile:

% dune build main.exe

% _build/default/main.exe

30

%

(executable

(name main))

dune:
Indicates that an

executable (rather than a

library) is to be built

Name of main file

(entry point)

Check out https://medium.com/@bobbypriambodo/starting-an-ocaml-

app-project-using-dune-d4f74e291de8

Dune commands

∙ If defined, run a project’s test suite:

dune runtest

∙ Load the modules defined in src/ into the utop top-

level interface:

dune utop src

- utop is a replacement for ocaml that includes

dependent files, so they don’t have be be #loaded

A Note on ;;

∙ ;; ends an expression in the top-level of OCaml

− Use it to say: “Give me the value of this expression”

− Not used in the body of a function

− Not needed after each function definition

∙ Though for now it won’t hurt if used there

∙ There is also a single semi-colon ; in OCaml

− But we won’t need it for now

− It’s only useful when programming imperatively, i.e.,

with side effects
∙ Which we won’t do for a while

	Slide 1
	Slide 2
	Slide 3: About Me
	Slide 4: What about you?
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12: About the Final Letter Grades
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Studying Programming Languages
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 31
	Slide 37
	Slide 38
	Slide 39
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

