CMSC 330:
Organization of Programming Languages

OCaml Basics

Spring 2026

OCaml Compiler

- OCaml programs can be compiled using

- ocamlc: produces bytecode
- Faster to compile
- Slower to run

- ocamlopt: produces native code
- Faster, but not platform-independent (or as easily
debugged)

OCaml Compiler

Compiling and running the following small program:

hello.ml;

(* A small OCaml program ¥*)
print string "Hello world'\n";;

%

ocamlc hello.ml OCaml interpreter
./a.out

%

[e)

=

¥ ocaml hello.ml
Hello world! Hello world!

OCaml Compiler: Multiple Files

main.ml;

let main () =
print_int (Util.add 10 20);
print_string "\n"

let () = main ()

util.ml:

let add x y = x+y

« Compile both together (produces a.out)

ocamlc util.ml main.ml

* Or compile separately
ocamlc —-c util.ml
ocamlc util.cmo main.ml

 To execute
./a.out

OCaml Top-level

- The top-level is a read-eval-print loop (REPL) for OCaml
- Start the top-level via the ocaml command

#ocaml
% OCaml version 5.4.0
print string ”“Hello world!'\n";;
Hello world!

utop is an alternative top-level; improves on ocaml
To exit the top-level, type *D (Control D) or call the exit O

exit 0;;

Loading Code Files into the Top-level

File hello.ml :

print string "Hello world!'\n";;

Load a file into top-level
#use “filename.ml”

Example: * #use processes a file a line at a time
#use "hello.ml";;

Hello world!
- : unit = ()

#

OPAM: OCaml Package Manager

- opam is the package manager for OCaml
- Manages libraries and different compiler installations

- You should install the following packages with opam
- utop, a top-level interface
- dune, a build system for larger projects

Project Builds with dune

. Use dune to compile projects---automatically finds
dependencies, invokes compiler and linker
. Define a dune file, similar to a Makefile:

dune init project HelloWorld
cd HelloWorld

dune build
_build/default/main.exe

Dune commands

 |f defined, run a project’s test suite:
dune runtest

* Load the modules defined in src/ into the utop top-
level interface:

dune utop src

Functional Programming with OCaml

A functional language:

« defines computations as mathematical functions
 discourages use of mutable state, the information
maintained by a computation

10

Functional vs. Imperative

Functional languages

- Higher level of abstraction: What to compute, not how
- Immutable state: easier to reason about (meaning)
- Easierto develop robust software

Imperative languages

- Lower level of abstraction: How to compute, not what
- Mutable state: harder to reason about (behavior)
- Harder to develop robust software

11

Functional vs. Imperative

sum=0

forxin{1,2,3,4]: List.fold_left (+) 0 [1;2;3;4]
sum =sum + X

print(sum)

Imperative: Functional: Emphasizes

Emphasizes control declarative style.

flow.

12

Functional vs. Imperative

Imperative (step-by-step,

Functional (expression- with mutable state)

based, no mutation) int fact(int n) {

int result = 1;

let rec fact n = int i = 1;
if n =0 then 1 while i <= n{
else n * fact (n - 1) result = result * 1i;
i=1i+1;
}

return result;
* Novariables are updated. }

e Defined as a mathematical function.

: . * Uses variables (result, i) that
* Describes what factorial is: nl=nx(n-1)!

change over time.
 Uses aloop to control execution.
* Describes how to compute the
factorial step by step.

13

ML-style (Functional) Languages

* ML (Meta Language)

— Univ. of Edinburgh, 1973

— Part of a theorem proving system LCF

Standard ML

— Bell Labs and Princeton, 1990; Yale, AT&T, U. Chicago
OCaml (Objective CAML)

— INRIA, 1996

* French Nat’l Institute for Research in Computer Science
— O s for“objective”, meaning objects (which we’ll ighore)

Haskell (1998): lazy functional programming
Scala (2004): functional and OO programming

14

Key Features of ML

First-class functions

— Functions can be parameters to other functions (“higher order”) and return
values, and stored as data

Favor immutability (“assign once”)

Data types and pattern matching
— Convenient for certain kinds of data structures

Type inference

— No need to write types in the source language
* Butthe language is statically typed

— Supports parametric polymorphism
* GenericsinJava, templates in C++

Exceptions and garbage collection

15

Why study functional programming?

Many modern languages are influenced by Functional
languages:

Garbage collection

« LISP [1938], Java [1995], Python 2 [2000], Go [2007]
Parametric polymorphism (generics)

« ML [1973], SML [1990], Java 5 [2004], Rust [2010]
Higher-order functions

« LISP [1958], Haskell [1998], Python 2 [2000], Swift [2014]
Type inference

« ML [1973], C++11 [2011], Java 7 [2011], Rust [2010]
Pattern matching

« SML [1990], Scala [2002], Rust [2010], Java 16 [2021]

16

Recommended Textbook

SECOND EDITION

REAL WORLD OCAML

Functional Programming for the Masses

ANIL MADHAVAPEDDY
AND YARON MINSKY

Free online:
https://dev.realworldocaml.org/

17

Similar Courses

e CS3110 (Cornell)

e CSE341 (Washington)

* 601.426 (Johns Hopkins)
e COS326 (Princeton)

e CS152 (Harvard)

e CS421 (UIUC)

18

Other Resources

e Cornellcs3110 book is another course which uses
OCaml; itis more focused on programming and less on
PL theory than this class is.

e ocaml.orgisthe home of OCamlfor finding downloads,
documentation, etc. The tutorials are also very good and
there is a page of books.

* OCamlfrom the very beginning is a free online book.

19

https://www.cs.cornell.edu/courses/cs3110/2020sp/textbook/
https://www.cs.cornell.edu/courses/cs3110/2020sp/textbook/
http://ocaml.org/
http://ocaml.org/
http://ocaml.org/learn/tutorials/
http://ocaml.org/learn/books.html
https://johnwhitington.net/ocamlfromtheverybeginning/
https://johnwhitington.net/ocamlfromtheverybeginning/
https://johnwhitington.net/ocamlfromtheverybeginning/

OCaml Coding Guidelines

* We will not grade on style, but style is important
* Recommended coding guidelines:

* https://ocaml.org/learn/tutorials/guidelines.html

20

https://ocaml.org/learn/tutorials/guidelines.html
https://ocaml.org/learn/tutorials/guidelines.html

Lecture Presentation Style

e Qurfocus: semantics and idioms for OCaml

* Semantics is what the language does
* |dioms are ways to use the language well

e We will also cover some useful libraries

 Syntaxis whatyou type, not what you mean
* Inone lang: Different syntax for similar concepts
* Across langs: Same syntax for different concepts

* Syntax can be a source of fierce disagreement among language
designers!

21

Expressions

 Expressions are our primary building block
— Akin to statements in imperative languages

* Everykind of expression has
— Syntax
- We use metavariable e to designate an arbitrary expression
— Semantics

- Type checking rules (static semantics): produce a type or fail
with an error message

- Evaluation rules (dynamic semantics): produce a value
— (or an exception or infinite loop)
— Used only on expressions that type-check

22

Values

* A value is an expression that is final
* 34 is a value, true is a value
« 34+17 is an expression, but not a value

* Evaluating an expression means running it until it’s a
value

e 34+17 evaluatesto 51

e~>V

23

Types

* Types classify expressions

* The set of values an expression could evaluate to
* We use metavariable tto designate an arbitrary type

 Expression e has type tif e will (always) evaluate to a
value of type t

* Write e: tto say e hastype t.
* Determining that e has type tis called type checking

1:int true:bool
3+4: Int “hello”:string

24

If EXpressions

e Syntax: if el then e2 else e3

» Type checking

I'Fey:bool T'Hey:T™ T'FHeld:r
I'Hif el then e2 else e3: T

°* |[treads: if el then e2 else e3 hastype t if
* el hastype bool
* Both e2 and e3 have type t (for some t)

25

If Expressions: Type Checking and Evaluation

if 7 > 42 then "hello" else “goodbye";;

- : string = "goodbye”

26

If Expressions: Type Checking and Evaluation

if false then 3 else 3.0;;

Error: This expression has type float but
an expression was expected of type int

27

If Expressions: Another Example

If 10 < 20 then print int 10;;

Same as

If 10 < 20 then print int 10 else ();;

28

Functions

« OCaml functions are like mathematical functions
« Compute a result from provided arguments

let next x = x + 1;;
next 10;;

next : int -> int = <fun>
-:int=11

29

Recursive Functions

(* requires n>= 0
returns: n! ¥*)
let rec fact n =
if n = 0 then
1
else
n * fact (n-1)

30

Function Types

 |In OCaml, ->is the function type constructor

— Type t1 -> tisafunctionwith argument or domain
type t1 and return or range type t

— Type t1 -> t2 -> tisafunctionthattakes two
Inputs, of types t1 and t2, and returns a value of type
t. Etc.

« Examples

(* type bool -> bool *)
— not

-+ (* type int -> int -> int ¥*)

31

Type Inference

* A declared variable need not be annotated with its type
* The type can be inferred
« Type inference happens as a part of type checking
« Determines a type that satisfies code’s constraints

« Whatisthe type of:

let rec fact n =
if n = 0 then
1
else
n * fact (n-1)

32

Type Checking: Calling Functions

e Syntax fel..en
* Type checking

'-f:t1 ->t3... >t, >u, I'Feg:mm I'key:mn ..I'ke,:m,

I'Ff el e2 .. en:u

ltread:if f:tl1->.->tn->u,and el:tl, .., en
: tnthen fel..en:u

« Example:
- not true:bool
— since not :bool ->bool and true :bool

33

let rec fact n =

Calling Functions: Evaluation| it n = o then

1
else
* £ -1
fact 2 0 act (n-1)
if 2=0 then 1 else 2*fact(2-1)
2 * fact 1

2 * (1f 1=0 then 1 else l*fact(l-1))
2 * 1 * fact O

2 * 1 * (1if 0=0 then 1 else
O*fact (0-1))

2 * 1 * 1
2

34

Function Type Checking: More Examples

let double x = x * 2;;

double: int -> int

double is the name of the function. Not the data type in C or Java.

35

Function Type Checking: More Examples

let fn x = (int of float x) * 3;;

Type of fn: float -> int

36

Mutually Recursrive Functions

let rec odd n =

if n == 0 then false
else even(n-1)
and
even n =
if n == 0 then true

else odd(n-1) ;;

37

Polymorphic Types

let egqxy = (x=vy);;

eq:'a -> 'a -> bool

38

Type annotations

we can provide type annotations manually.

let (x : int) = 3;; (* binds x to 3 ¥*)
let add (x:int) (y:int):int = x + y;;
let id x = x;; (*identity function *)

let id (x:int) = x;;

39

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: ML-style (Functional) Languages
	Slide 15: Key Features of ML
	Slide 16: Why study functional programming?
	Slide 17: Recommended Textbook
	Slide 18: Similar Courses
	Slide 19: Other Resources
	Slide 20: OCaml Coding Guidelines
	Slide 21: Lecture Presentation Style
	Slide 22: Expressions
	Slide 23: Values
	Slide 24: Types
	Slide 25: If Expressions
	Slide 26: If Expressions: Type Checking and Evaluation
	Slide 27: If Expressions: Type Checking and Evaluation
	Slide 28
	Slide 29: Functions
	Slide 30: Recursive Functions
	Slide 31: Function Types
	Slide 32: Type Inference
	Slide 33: Type Checking: Calling Functions
	Slide 34: Calling Functions: Evaluation
	Slide 35: Function Type Checking: More Examples
	Slide 36: Function Type Checking: More Examples
	Slide 37: Mutually Recursrive Functions
	Slide 38: Polymorphic Types
	Slide 39: Type annotations

