
CMSC 330:
Organization of Programming Languages

OCaml Basics

Spring 2026

1

OCaml Compiler

∙ OCaml programs can be compiled using

∙

∙ ocamlc: produces bytecode
∙ Faster to compile
∙ Slower to run

∙ ocamlopt: produces native code

∙ Faster, but not platform-independent (or as easily

debugged)

2

OCaml Compiler

∙ Compiling and running the following small program:

% ocamlc hello.ml

% ./a.out

Hello world!

(* A small OCaml program *)

print_string "Hello world!\n";;

hello.ml:

OCaml interpreter

% ocaml hello.ml

Hello world!

3

OCaml Compiler: Multiple Files

let main () =

 print_int (Util.add 10 20);

 print_string "\n"

let () = main ()

main.ml:

let add x y = x+y

util.ml:

• Compile both together (produces a.out)
ocamlc util.ml main.ml

• Or compile separately
ocamlc –c util.ml

ocamlc util.cmo main.ml

• To execute
./a.out

4

OCaml Top-level

∙ The top-level is a read-eval-print loop (REPL) for OCaml

∙ Start the top-level via the ocaml command

 #ocaml

 % OCaml version 5.4.0

 print_string ”Hello world!\n";;

 Hello world!

 - : unit = ()

∙ utop is an alternative top-level; improves on ocaml
∙ To exit the top-level, type ^D (Control D) or call the exit 0

exit 0;;

5

Loading Code Files into the Top-level

∙ Load a file into top-level

 #use “filename.ml”

∙ Example:

 # #use "hello.ml";;

 Hello world!

 - : unit = ()

 #

File hello.ml :

print_string "Hello world!\n";;

#use processes a file a line at a time

6

OPAM: OCaml Package Manager

∙ opam is the package manager for OCaml

− Manages libraries and different compiler installations

∙ You should install the following packages with opam

− utop, a top-level interface

− dune, a build system for larger projects

7

Project Builds with dune

● Use dune to compile projects---automatically finds

dependencies, invokes compiler and linker

● Define a dune file, similar to a Makefile:

dune init project HelloWorld

cd HelloWorld

dune build

_build/default/main.exe

8

Dune commands

• If defined, run a project’s test suite:

 dune runtest

• Load the modules defined in src/ into the utop top-

level interface:

 dune utop src

9

Functional Programming with OCaml
A functional language:

• defines computations as mathematical functions

• discourages use of mutable state, the information

maintained by a computation

10

Functional vs. Imperative
Functional languages

• Higher level of abstraction: What to compute, not how

• Immutable state: easier to reason about (meaning)

• Easier to develop robust software

Imperative languages

• Lower level of abstraction: How to compute, not what

• Mutable state: harder to reason about (behavior)

• Harder to develop robust software

11

sum = 0
for x in [1,2,3,4]:
 sum = sum + x
print(sum)

List.fold_left (+) 0 [1;2;3;4]

Imperative:
Emphasizes control
flow.

Functional: Emphasizes
declarative style.

Functional vs. Imperative

12

13

Functional vs. Imperative

int fact(int n){

int result = 1;

int i = 1;

while i <= n{

 result = result * i;

 i = i + 1;

}

return result;

}

let rec fact n =

 if n = 0 then 1

 else n * fact (n - 1)

Functional (expression-
based, no mutation)

• No variables are updated.
• Defined as a mathematical function.
• Describes what factorial is: n!=n×(n−1)!

Imperative (step-by-step,
with mutable state)

• Uses variables (result, i) that
change over time.

• Uses a loop to control execution.
• Describes how to compute the

factorial step by step.

ML-style (Functional) Languages
• ML (Meta Language)

– Univ. of Edinburgh, 1973
– Part of a theorem proving system LCF

• Standard ML
– Bell Labs and Princeton, 1990; Yale, AT&T, U. Chicago

• OCaml (Objective CAML)
– INRIA, 1996

• French Nat’l Institute for Research in Computer Science
– O is for “objective”, meaning objects (which we’ll ignore)

• Haskell (1998): lazy functional programming
• Scala (2004): functional and OO programming

14

Key Features of ML
• First-class functions

– Functions can be parameters to other functions (“higher order”) and return
values, and stored as data

• Favor immutability (“assign once”)
• Data types and pattern matching

– Convenient for certain kinds of data structures
• Type inference

– No need to write types in the source language
• But the language is statically typed

– Supports parametric polymorphism
• Generics in Java, templates in C++

• Exceptions and garbage collection

15

Why study functional programming?

Many modern languages are influenced by Functional
languages:

• Garbage collection

• LISP [1958], Java [1995], Python 2 [2000], Go [2007]

• Parametric polymorphism (generics)

• ML [1973], SML [1990], Java 5 [2004], Rust [2010]

• Higher-order functions

• LISP [1958], Haskell [1998], Python 2 [2000], Swift [2014]

• Type inference

• ML [1973], C++11 [2011], Java 7 [2011], Rust [2010]

• Pattern matching

• SML [1990], Scala [2002], Rust [2010], Java 16 [2021]

16

Recommended Textbook

Free online:
https://dev.realworldocaml.org/

17

Similar Courses

• CS3110 (Cornell)
• CSE341 (Washington)
• 601.426 (Johns Hopkins)
• COS326 (Princeton)
• CS152 (Harvard)
• CS421 (UIUC)

18

Other Resources

• Cornell cs3110 book is another course which uses
OCaml; it is more focused on programming and less on
PL theory than this class is.

• ocaml.org is the home of OCaml for finding downloads,
documentation, etc. The tutorials are also very good and
there is a page of books.

• OCaml from the very beginning is a free online book.

19

https://www.cs.cornell.edu/courses/cs3110/2020sp/textbook/
https://www.cs.cornell.edu/courses/cs3110/2020sp/textbook/
http://ocaml.org/
http://ocaml.org/
http://ocaml.org/learn/tutorials/
http://ocaml.org/learn/books.html
https://johnwhitington.net/ocamlfromtheverybeginning/
https://johnwhitington.net/ocamlfromtheverybeginning/
https://johnwhitington.net/ocamlfromtheverybeginning/

OCaml Coding Guidelines
• We will not grade on style, but style is important
• Recommended coding guidelines:

• https://ocaml.org/learn/tutorials/guidelines.html

20

https://ocaml.org/learn/tutorials/guidelines.html
https://ocaml.org/learn/tutorials/guidelines.html

Lecture Presentation Style
• Our focus: semantics and idioms for OCaml

• Semantics is what the language does
• Idioms are ways to use the language well

• We will also cover some useful libraries

• Syntax is what you type, not what you mean
• In one lang: Different syntax for similar concepts
• Across langs: Same syntax for different concepts
• Syntax can be a source of fierce disagreement among language

designers!

21

Expressions

• Expressions are our primary building block
– Akin to statements in imperative languages

• Every kind of expression has
– Syntax

• We use metavariable e to designate an arbitrary expression
– Semantics

• Type checking rules (static semantics): produce a type or fail
with an error message

• Evaluation rules (dynamic semantics): produce a value
– (or an exception or infinite loop)
– Used only on expressions that type-check

22

Values

• A value is an expression that is final
• 34 is a value, true is a value

• 34+17 is an expression, but not a value

• Evaluating an expression means running it until it’s a
value
• 34+17 evaluates to 51

e → v
23

Types
• Types classify expressions

• The set of values an expression could evaluate to
• We use metavariable t to designate an arbitrary type

• Expression e has type t if e will (always) evaluate to a
value of type t

• Write e : t to say e has type t.
• Determining that e has type t is called type checking

1: int true:bool
3+4: int “hello”:string

24

If Expressions

• Syntax: if e1 then e2 else e3

• Type checking

• It reads: if e1 then e2 else e3 has type t if

• e1 has type bool

• Both e2 and e3 have type t (for some t)

25

If Expressions: Type Checking and Evaluation

if 7 > 42 then "hello" else “goodbye";;

- : string = "goodbye”

26

If Expressions: Type Checking and Evaluation

 if false then 3 else 3.0;;

Error: This expression has type float but

an expression was expected of type int

27

 If 10 < 20 then print_int 10;;

Same as

 If 10 < 20 then print_int 10 else ();;

If Expressions: Another Example

28

Functions

let next x = x + 1;;

next 10;;

next : int -> int = <fun>
- : int = 11

• OCaml functions are like mathematical functions

• Compute a result from provided arguments

29

Recursive Functions

(* requires n>= 0

 returns: n! *)

let rec fact n =

 if n = 0 then

 1

 else

 n * fact (n-1)

30

Function Types

• In OCaml, -> is the function type constructor
– Type t1 -> t is a function with argument or domain

type t1 and return or range type t
– Type t1 -> t2 -> t is a function that takes two

inputs, of types t1 and t2, and returns a value of type
t. Etc.

• Examples
– not

– int_of_float

– +

(* type bool -> bool *)

(* type float -> int *)

(* type int -> int -> int *)

31

Type Inference

• A declared variable need not be annotated with its type
• The type can be inferred

• Type inference happens as a part of type checking
• Determines a type that satisfies code’s constraints

• What is the type of:

let rec fact n =

 if n = 0 then

 1

 else

 n * fact (n-1)

32

Type Checking: Calling Functions

• Syntax f e1 … en
• Type checking

It read: if f : t1 -> … -> tn -> u , and e1 : t1, …, en
: tn then f e1 … en : u

• Example:
– not true : bool
– since not : bool -> bool and true : bool

33

Calling Functions: Evaluation

fact 2

if 2=0 then 1 else 2*fact(2-1)

2 * fact 1

2 * (if 1=0 then 1 else 1*fact(1-1))

2 * 1 * fact 0

2 * 1 * (if 0=0 then 1 else

0*fact(0-1))

2 * 1 * 1

2

let rec fact n =

 if n = 0 then

 1

 else

 n * fact (n-1)

34

Function Type Checking: More Examples

let double x = x * 2;;

double: int -> int

35

double is the name of the function. Not the data type in C or Java.

Function Type Checking: More Examples

let fn x = (int_of_float x) * 3;;

Type of fn: float -> int

36

Mutually Recursrive Functions

let rec odd n =

 if n == 0 then false

 else even(n-1)

 and

 even n =

 if n == 0 then true

 else odd(n-1);;

37

Polymorphic Types

let eq x y = (x = y);;

eq:'a -> 'a -> bool

38

Type annotations

let (x : int) = 3;; (* binds x to 3 *)

let add (x:int) (y:int):int = x + y;;

let id x = x;; (*identity function *)

let id (x:int) = x;;

we can provide type annotations manually.

39

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: ML-style (Functional) Languages
	Slide 15: Key Features of ML
	Slide 16: Why study functional programming?
	Slide 17: Recommended Textbook
	Slide 18: Similar Courses
	Slide 19: Other Resources
	Slide 20: OCaml Coding Guidelines
	Slide 21: Lecture Presentation Style
	Slide 22: Expressions
	Slide 23: Values
	Slide 24: Types
	Slide 25: If Expressions
	Slide 26: If Expressions: Type Checking and Evaluation
	Slide 27: If Expressions: Type Checking and Evaluation
	Slide 28
	Slide 29: Functions
	Slide 30: Recursive Functions
	Slide 31: Function Types
	Slide 32: Type Inference
	Slide 33: Type Checking: Calling Functions
	Slide 34: Calling Functions: Evaluation
	Slide 35: Function Type Checking: More Examples
	Slide 36: Function Type Checking: More Examples
	Slide 37: Mutually Recursrive Functions
	Slide 38: Polymorphic Types
	Slide 39: Type annotations

