
15 Subtyping

We have spent the last several chapters studying the typing behavior of a va-

riety of language features within the framework of the simply typed lambda-

calculus. This chapter addresses a more fundamental extension: subtyping

(sometimes called subtype polymorphism). Unlike the features we have stud-

ied up to now, which could be formulated more or less orthogonally to each

other, subtyping is a cross-cutting extension, interacting with most other lan-

guage features in non-trivial ways.

Subtyping is characteristically found in object-oriented languages and is

often considered an essential feature of the object-oriented style. We will ex-

plore this connection in detail in Chapter 18; for now, though, we present sub-

typing in a more economical setting with just functions and records, where

most of the interesting issues already appear. §15.5 discusses the combina-

tion of subtyping with some of the other features we have seen in previous

chapters. In the final section (15.6) we consider a more refined semantics

for subtyping, in which the use of suptyping corresponds to the insertion of

run-time coercions.

15.1 Subsumption

Without subtyping, the rules of the simply typed lambda-calculus can be

annoyingly rigid. The type system’s insistence that argument types exactly

match the domain types of functions will lead the typechecker to reject many

programs that, to the programmer, seem obviously well-behaved. For exam-

ple, recall the typing rule for function application:

Γ ! t1 : T11→T12 Γ ! t2 : T11

Γ ! t1 t2 : T12

(T-App)

The calculus studied in this chapter is λ<:, the simply typed lambda-calculus with subtyping

(Figure 15-1) and records (15-3); the corresponding OCaml implementation is rcdsub. (Some

of the examples also use numbers; fullsub is needed to check these.)



182 15 Subtyping

According to this rule, the well-behaved term

(λr:{x:Nat}. r.x) {x=0,y=1}

is not typable, since the type of the argument is {x:Nat,y:Nat}, whereas

the function accepts {x:Nat}. But, clearly, the function just requires that

its argument is a record with a field x; it doesn’t care what other fields the

argument may or may not have. Moreover, we can see this from the type of the

function—we don’t need to look at its body to verify that it doesn’t use any

fields besides x. It is always safe to pass an argument of type {x:Nat,y:Nat}

to a function that expects type {x:Nat}.

The goal of subtyping is to refine the typing rules so that they can accept

terms like the one above. We accomplish this by formalizing the intuition that

some types are more informative than others: we say that S is a subtype of T,

written S <: T, to mean that any term of type S can safely be used in a context

where a term of type T is expected. This view of subtyping is often called the

principle of safe substitution.

A simpler intuition is to read S <: T as “every value described by S is also

described by T,” that is, “the elements of S are a subset of the elements of T.”

We shall see in §15.6 that other, more refined, interpretations of subtyping

are sometimes useful, but this subset semantics suffices for most purposes.

The bridge between the typing relation and this subtype relation is pro-

vided by adding a new typing rule—the so-called rule of subsumption:

Γ ! t : S S <: T

Γ ! t : T
(T-Sub)

This rule tells us that, if S <: T, then every element t of S is also an element of

T. For example, if we define the subtype relation so that {x:Nat,y:Nat} <:

{x:Nat}, then we can use rule T-Sub to derive ! {x=0,y=1} : {x:Nat},

which is what we need to make our motivating example typecheck.

15.2 The Subtype Relation

The subtype relation is formalized as a collection of inference rules for de-

riving statements of the form S <: T, pronounced “S is a subtype of T” (or “T

is a supertype of S”). We consider each form of type (function types, record

types, etc.) separately; for each one, we introduce one or more rules formal-

izing situations when it is safe to allow elements of one type of this form to

be used where another is expected.

Before we get to the rules for particular type constructors, we make two

general stipulations: first, that subtyping should be reflexive,

S <: S (S-Refl)



15.2 The Subtype Relation 183

and second, that it should be transitive:

S <: U U <: T

S <: T
(S-Trans)

These rules follow directly from the intuition of safe substitution.

Now, for record types, we have already seen that we want to consider the

type S = {k1:S1...km:Sm} to be a subtype of T = {l1:T1...ln:Tn} if T has

fewer fields than S. In particular, it is safe to “forget” some fields at the end

of a record type. The so-called width subtyping rule captures this intuition:

{li:Ti i∈1..n+k} <: {li:Ti i∈1..n} (S-RcdWidth)

It may seem surprising that the “smaller” type—the subtype—is the one with

more fields. The easiest way to understand this is to adopt a more liberal

view of record types than we did in §11.8, regarding a record type {x:Nat}

as describing “the set of all records with at least a field x of type Nat.” Val-

ues like {x=3} and {x=5} are elements of this type, and so are values like

{x=3,y=100} and {x=3,a=true,b=true}. Similarly, the record type {x:Nat,

y:Nat} describes records with at least the fields x and y, both of type Nat.

Values like {x=3,y=100} and {x=3,y=100,z=true} are members of this

type, but {x=3} is not, and neither is {x=3,a=true,b=true}. Thus, the set

of values belonging to the second type is a proper subset of the set belonging

to the first type. A longer record constitutes a more demanding—i.e., more

informative—specification, and so describes a smaller set of values.

The width subtyping rule applies only to record types where the common

fields are identical. It is also safe to allow the types of individual fields to

vary, as long as the types of each corresponding field in the two records are

in the subtype relation. The depth subtyping rule expresses this intuition:

for each i Si <: Ti

{li:Si i∈1..n} <: {li:Ti i∈1..n}
(S-RcdDepth)

The following subtyping derivation uses S-RcdWidth and S-RcdDepth to-
gether to show that the nested record type {x:{a:Nat,b:Nat},y:{m:Nat}}
is a subtype of {x:{a:Nat},y:{}}:

S-RcdWidth
{a:Nat,b:Nat} <: {a:Nat}

S-RcdWidth
{m:Nat} <: {}

S-RcdDepth
{x:{a:Nat,b:Nat},y:{m:Nat}} <: {x:{a:Nat},y:{}}

If we want to use S-RcdDepth to refine the type of just a single record field
(instead of refining every field, as we did in the example above), we can use
S-Refl to obtain trivial subtyping derivations for the other fields.

S-RcdWidth
{a:Nat,b:Nat} <: {a:Nat}

S-Refl
{m:Nat} <: {m:Nat}

S-RcdDepth
{x:{a:Nat,b:Nat},y:{m:Nat}} <: {x:{a:Nat},y:{m:Nat}}



184 15 Subtyping

We can also use the transitivity rule, S-Trans, to combine width and depth
subtyping. For example, we can obtain a supertype by promoting the type of
one field while dropping another:

S-RcdWidth
{x:{a:Nat,b:Nat},y:{m:Nat}}

<: {x:{a:Nat,b:Nat}}

S-RcdWidth
{a:Nat,b:Nat}

<: {a:Nat}
S-RcdDepth

{x:{a:Nat,b:Nat}}

<: {x:{a:Nat}}
S-Trans

{x:{a:Nat,b:Nat},y:{m:Nat}} <: {x:{a:Nat}}

Our final record subtyping rule arises from the observation that the order

of fields in a record does not make any difference to how we can safely use it,

since the only thing that we can do with records once we’ve built them—i.e.,

projecting their fields—is insensitive to the order of fields.

{kj:Sj j∈1..n} is a permutation of {li:Ti i∈1..n}

{kj:Sj j∈1..n} <: {li:Ti i∈1..n}
(S-RcdPerm)

For example, S-RcdPerm tells us that {c:Top,b:Bool,a:Nat} is a subtype

of {a:Nat,b:Bool,c:Top}, and vice versa. (This implies that the subtype

relation will not be anti-symmetric.)

S-RcdPerm can be used in combination with S-RcdWidth and S-Trans to

drop fields from anywhere in a record type, not just at the end.

15.2.1 Exercise [!]: Draw a derivation showing that {x:Nat,y:Nat,z:Nat} is a

subtype of {y:Nat}. "

S-RcdWidth, S-RcdDepth, and S-RcdPerm each embody a different sort

of flexibility in the use of records. For purposes of discussion, it is useful to

present them as three separate rules. In particular, there are languages that

allow some of them but not others; for example, most variants of Abadi and

Cardelli’s object calculus (1996) omit width subtyping. However, for purposes

of implementation it is more convenient to combine them into a single macro-

rule that does all three things at once. This rule is discussed in the next

chapter (cf. page 211).

Since we are working in a higher-order language, where not only numbers

and records but also functions can be passed as arguments to other func-

tions, we must also give a subtyping rule for function types—i.e., we must

specify under what circumstances it is safe to use a function of one type in a

context where a different function type is expected.

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2

(S-Arrow)



15.2 The Subtype Relation 185

Notice that the sense of the subtype relation is reversed (contravariant) for

the argument types in the left-hand premise, while it runs in the same di-

rection (covariant) for the result types as for the function types themselves.

The intuition is that, if we have a function f of type S1→S2, then we know

that f accepts elements of type S1; clearly, f will also accept elements of any

subtype T1 of S1. The type of f also tells us that it returns elements of type

S2; we can also view these results belonging to any supertype T2 of S2. That

is, any function f of type S1→S2 can also be viewed as having type T1→T2.

An alternative view is that it is safe to allow a function of one type S1→S2 to

be used in a context where another type T1→T2 is expected as long as none of

the arguments that may be passed to the function in this context will surprise

it (T1 <: S1) and none of the results that it returns will surprise the context

(S2 <: T2).

Finally, it is convenient to have a type that is a supertype of every type. We

introduce a new type constant Top, plus a rule that makes Top a maximum

element of the subtype relation.

S <: Top (S-Top)

§15.4 discusses the Top type further.

Formally, the subtype relation is the least relation closed under the rules we

have given. For easy reference, Figures 15-1, 15-2, and 15-3 recapitulate the

full definition of the simply typed lambda-calculus with records and subtyp-

ing, highlighting the syntactic forms and rules we have added in this chapter.

Note that the presence of the reflexivity and transitivity rules means that the

subtype relation is clearly a preorder ; however, because of the record per-

mutation rule, it is not a partial order: there are many pairs of distinct types

where each is a subtype of the other.

To finish the discussion of the subtype relation, let us verify that the ex-

ample at the beginning of the chapter now typechecks. Using the following

abbreviations to avoid running off the edge of the page,

f
def
= λr:{x:Nat}. r.x Rx

def
= {x:Nat}

xy
def
= {x=0,y=1} Rxy

def
= {x:Nat,y:Nat}

and assuming the usual typing rules for numeric constants, we can construct
a derivation for the typing statement ! f xy : Nat as follows:

...

! f : Rx→Nat

! 0 : Nat ! 1 : Nat
T-Rcd

! xy : Rxy
S-RcdWidth

Rxy <: Rx
T-Sub

! xy : Rx
T-App

! f xy : Nat



186 15 Subtyping

→ <: Top Based on λ→ (9-1)

Syntax

t ::= terms:

x variable

λx:T.t abstraction

t t application

v ::= values:

λx:T.t abstraction value

T ::= types:

Top maximum type

T→T type of functions

Γ ::= contexts:

∅ empty context

Γ , x:T term variable binding

Evaluation t #→ t′

t1 #→ t′1

t1 t2 #→ t′1 t2

(E-App1)

t2 #→ t′2

v1 t2 #→ v1 t
′
2

(E-App2)

(λx:T11.t12) v2 #→ [x$ v2]t12 (E-AppAbs)

Subtyping S <: T

S <: S (S-Refl)

S <: U U <: T

S <: T
(S-Trans)

S <: Top (S-Top)

T1 <: S1 S2 <: T2

S1→S2 <: T1→T2

(S-Arrow)

Typing Γ ! t : T

x:T ∈ Γ

Γ ! x : T
(T-Var)

Γ , x:T1 ! t2 : T2

Γ ! λx:T1.t2 : T1→T2

(T-Abs)

Γ ! t1 : T11→T12 Γ ! t2 : T11

Γ ! t1 t2 : T12

(T-App)

Γ ! t : S S <: T

Γ ! t : T
(T-Sub)

Figure 15-1: Simply typed lambda-calculus with subtyping (λ<:)

15.2.2 Exercise [!]: Is this the only derivation of the statement ! f xy : Nat? "

15.2.3 Exercise [!]: (1) How many different supertypes does {a:Top,b:Top} have?

(2) Can you find an infinite descending chain in the subtype relation—that is,

an infinite sequence of types S0, S1, etc. such that each Si+1 is a subtype of

Si? (3) What about an infinite ascending chain? "

15.2.4 Exercise [!]: Is there a type that is a subtype of every other type? Is there an

arrow type that is a supertype of every other arrow type? "



15.2 The Subtype Relation 187

→ {} Extends λ→ (9-1)

New syntactic forms

t ::= ... terms:

{li=ti i∈1..n} record

t.l projection

v ::= ... values:

{li=vi i∈1..n} record value

T ::= ... types:

{li:Ti i∈1..n} type of records

New evaluation rules t #→ t′

{li=vi i∈1..n}.lj #→ vj (E-ProjRcd)

t1 #→ t′1

t1.l #→ t′1.l
(E-Proj)

tj #→ t′j

{li=vi i∈1..j−1,lj=tj,lk=tk k∈j+1..n}

#→ {li=vi i∈1..j−1,lj=t
′
j,lk=tk

k∈j+1..n}

(E-Rcd)

New typing rules Γ ! t : T

for each i Γ ! ti : Ti

Γ ! {li=ti i∈1..n} : {li:Ti i∈1..n}
(T-Rcd)

Γ ! t1 : {li:Ti i∈1..n}

Γ ! t1.lj : Tj
(T-Proj)

Figure 15-2: Records (same as Figure 11-7)

→ {} <: Extends λ<: (15-1) and simple record rules (15-2)

New subtyping rules S <: T

{li:Ti i∈1..n+k} <: {li:Ti i∈1..n} (S-RcdWidth)

for each i Si <: Ti

{li:Si i∈1..n} <: {li:Ti i∈1..n}
(S-RcdDepth)

{kj:Sj j∈1..n} is a permutation of {li:Ti i∈1..n}

{kj:Sj j∈1..n} <: {li:Ti i∈1..n}

(S-RcdPerm)

Figure 15-3: Records and subtyping

15.2.5 Exercise [!!]: Suppose we extend the calculus with the product type con-

structor T1×T2 described in §11.6. It is natural to add a subtyping rule

S1 <: T1 S2 <: T2

S1×S2 <: T1×T2

(S-ProdDepth)

corresponding to S-RcdDepth for records. Would it be a good idea to add a

width subtyping rule for products

T1×T2 <: T1 (S-ProdWidth)

as well? "



188 15 Subtyping

15.3 Properties of Subtyping and Typing

Having decided on the definition of the lambda-calculus with subtyping, we

now have some work to do to verify that it makes sense—in particular, that

the preservation and progress theorems of the simply typed lambda-calculus

continue to hold in the presence of subtyping.

15.3.1 Exercise [Recommended, !!]: Before reading on, try to predict where diffi-

culties might arise. In particular, suppose we had made a mistake in defining

the subtype relation and included a bogus subtyping rule in addition to those

above. Which properties of the system can fail? On the other hand, suppose

we omit one of the subtyping rules—can any properties then break? "

We begin by recording one key property of the subtype relation—an analog

of the inversion lemma for the typing relation in the simply typed lambda-

calculus (Lemma 9.3.1). If we know that some type S is a subtype of an arrow

type, then the subtyping inversion lemma tells us that S itself must be an ar-

row type; moreover, it tells us that the left-hand sides of the arrows must be

(contravariantly) related, and so (covariantly) must the right-hand sides. Simi-

lar considerations apply when S is known to be a subtype of a record type: we

know that S has more fields (S-RcdWidth) in some order (S-RcdPerm), and

that the types of common fields are in the subtype relation (S-RcdDepth).

15.3.2 Lemma [Inversion of the subtype relation]:

1. If S <: T1→T2, then S has the form S1→S2, with T1 <: S1 and S2 <: T2.

2. If S <: {li:Ti i∈1..n}, then S has the form {kj:Sj j∈1..m}, with at least the

labels {li i∈1..n}—i.e., {li i∈1..n} ⊆ {kj j∈1..m}—and with Sj <: Ti for each com-

mon label li = kj . "

Proof: Exercise [Recommended, !!]. "

To prove that types are preserved during evaluation, we begin with an in-

version lemma for the typing relation (cf. Lemma 9.3.1 for the simply typed

lambda-calculus). Rather than stating the lemma in its most general form, we

give here just the cases that are actually needed in the proof of the preserva-

tion theorem below. (The general form can be read off from the algorithmic

subtype relation in the next chapter, Definition 16.2.2.)

15.3.3 Lemma:

1. If Γ ! λx:S1. s2 : T1→T2, then T1 <: S1 and Γ , x:S1 ! s2 : T2.



15.3 Properties of Subtyping and Typing 189

2. If Γ ! {ka=sa a∈1..m} : {li:Ti i∈1..n}, then {li i∈1..n} ⊆ {ka a∈1..m} and Γ ! sa :

Ti for each common label ka = li . "

Proof: Straightforward induction on typing derivations, using Lemma 15.3.2

for the T-Sub case. "

Next, we need a substitution lemma for the typing relation. The statement

of this lemma is unchanged from the simply typed lambda-calculus (Lemma

9.3.8), and its proof is nearly identical.

15.3.4 Lemma [Substitution]: If Γ , x:S ! t : T and Γ ! s : S, then Γ ! [x $ s]t :

T. "

Proof: By induction on typing derivations. We need new cases for T-Sub and

for the record typing rules T-Rcd and T-Proj, making straightforward use of

the induction hypothesis. The rest is just like the proof of 9.3.8. "

Now, the preservation theorem has the same statement as before. Its proof,

though, is somewhat complicated by subtyping at several points.

15.3.5 Theorem [Preservation]: If Γ ! t : T and t #→ t′, then Γ ! t′ : T. "

Proof: Straightforward induction on typing derivations. Most of the cases

are similar to the proof of preservation for the simply typed lambda-calculus

(9.3.9). We need new cases for the record typing rules and for subsumption.

Case T-Var: t = x

Can’t happen (there are no evaluation rules for variables).

Case T-Abs: t = λx:T1.t2

Can’t happen (t is already a value).

Case T-App: t = t1 t2 Γ ! t1 : T11→T12 Γ ! t2 : T11 T = T12

From the evaluation rules in Figures 15-1 and 15-2, we see that there are three

rules by which t #→ t′ can be derived: E-App1, E-App2, and E-AppAbs. Proceed

by cases.

Subcase E-App1: t1 #→ t′1 t′ = t′1 t2

The result follows from the induction hypothesis and T-App.

Subcase E-App2: t1 = v1 t2 #→ t′2 t′ = v1 t
′
2

Similar.

Subcase E-AppAbs: t1 = λx:S11. t12 t2 = v2 t′ = [x$ v2]t12

By Lemma 15.3.3(1), T11 <: S11 and Γ , x:S11 ! t12 : T12. By T-Sub, Γ ! t2 :

S11. From this and the substitution lemma (15.3.4), we obtain Γ ! t′ : T12.



190 15 Subtyping

Case T-Rcd: t = {li=ti i∈1..n} Γ ! ti : Ti for each i

T = {li:Ti i∈1..n}

The only evaluation rule whose left-hand side is a record is E-Rcd. From the

premise of this rule, we see that tj #→ t′j for some field tj . The result follows

from the induction hypothesis (applied to the corresponding assumption Γ !

tj : Tj ) and T-Rcd.

Case T-Proj: t = t1.lj Γ ! t1 : {li:Ti i∈1..n} T = Tj

From the evaluation rules in Figures 15-1 and 15-2, we see that there are two

rules by which t #→ t′ can be derived: E-Proj, E-ProjRcd.

Subcase E-Proj: t1 #→ t′1 t′ = t′1.lj

The result follows from the induction hypothesis and T-Proj.

Subcase E-ProjRcd: t1 = {ka=va a∈1..m} lj = kb t′ = vb

By Lemma 15.3.3(2), we have {li i∈1..n} ⊆ {ka a∈1..m} and Γ ! va : Ti for each

ka = li . In particular, Γ ! vb : Tj , as desired.

Case T-Sub: t : S S <: T

By the induction hypothesis, Γ ! t′ : S. By T-Sub, Γ ! t : T. "

To prove that well-typed terms cannot get stuck, we begin (as in Chapter 9)

with a canonical forms lemma, which tells us the possible shapes of values

belonging to arrow and record types.

15.3.6 Lemma [Canonical Forms]:

1. If v is a closed value of type T1→T2, then v has the form λx:S1.t2.

2. If v is a closed value of type {li:Ti i∈1..n}, then v has the form {kj=vj a∈1..m},

with {li i∈1..n} ⊆ {ka a∈1..m}. "

Proof: Exercise [Recommended, !!!]. "

The progress theorem and its proof are now quite close to what we saw in

the simply typed lambda-calculus. Most of the burden of dealing with subtyp-

ing has been pushed into the canonical forms lemma, and only a few small

changes are needed here.

15.3.7 Theorem [Progress]: If t is a closed, well-typed term, then either t is a value

or else there is some t′ with t #→ t′. "

Proof: By straightforward induction on typing derivations. The variable case

cannot occur (because t is closed). The case for lambda-abstractions is imme-

diate, since abstractions are values. The remaining cases are more interesting.



15.4 The Top and Bottom Types 191

Case T-App: t = t1 t2 ! t1 : T11→T12 ! t2 : T11 T = T12

By the induction hypothesis, either t1 is a value or else it can make a step of

evaluation; likewise t2. If t1 can take a step, then rule E-App1 applies to t. If

t1 is a value and t2 can take a step, then rule E-App2 applies. Finally, if both

t1 and t2 are values, then the canonical forms lemma (15.3.6) tells us that t1

has the form λx:S11.t12, so rule E-AppAbs applies to t.

Case T-Rcd: t = {li=ti i∈1..n} for each i ∈ 1..n, ! ti : Ti
T = {li:Ti i∈1..n}

By the induction hypothesis, each ti either is already a value or can make a

step of evaluation. If all of them are values, then t is a value. On the other

hand, if at least one can make a step, then rule E-Rcd applies to t.

Case T-Proj: t = t1.lj ! t1 : {li:Ti i∈1..n} T = Tj

By the induction hypothesis, either t1 is a value or it can make an evaluation

step. If t1 can make a step, then (by E-Proj) so can t. If t1 is a value, then

by the canonical forms lemma (15.3.6) t1 has the form {ka=vj a∈1..m}, with

{li i∈1..n} ⊆ {ka a∈1..m} and with ! vj : Ti for each li = kj . In particular, lj is

among the labels {ka a∈1..m} of t1, from which rule E-ProjRcd tells us that t

itself can take an evaluation step.

Case T-Sub: Γ ! t : S S <: T

The result follows directly from the induction hypothesis. "

15.4 The Top and Bottom Types

The maximal type Top is not a necessary part of the simply typed lambda-

calculus with subtyping; it can be removed without damaging the properties

of the system. However, it is included in most presentations, for several rea-

sons. First, it corresponds to the type Object found in most object-oriented

languages. Second, Top is a convenient technical device in more sophisticated

systems combining subtyping and parametric polymorphism. For example, in

System F<: (Chapters 26 and 28), the presence of Top allows us to recover or-

dinary unbounded quantification from bounded quantification, streamlining

the system. Indeed, even records can be encoded in F<:, further streamlining

the presentation (at least for purposes of formal study); this encoding criti-

cally depends on Top. Finally, since Top’s behavior is straightforward and it

is often useful in examples, there is little reason not to keep it.

It is natural to ask whether we can also complete the subtype relation with

a minimal element—a type Bot that is a subtype of every type. The answer is

that we can: this extension is formalized in Figure 15-4.

The first thing to notice is that Bot is empty—there are no closed values


