
CMSC 330: Organization of Programming
Languages

Lets, Tuples, Records

1CMSC 330 - Spring 2024

2

Let Expressions

• Syntax
– let x = e1 in e2
– x is a bound variable
– e1 is the binding expression
– e2 is the body expression

• let expressions bind local variables
– Different from let definitions, which are at the top-level

Let Expressions
• Syntax

– let x = e1 in e2

• Evaluation
– e1 ⇒ v1
– e2{v1/x}

3

let z = 3+4 in 3*z

21

Let Expressions
• Syntax

– let x = e1 in e2

• Type checking
– If e1 : t1 and
– If assuming x : t1 implies e2 : t
– Then (let x = e1 in e2) : t

4

Example
What is the type of let z = 3+4 in 3*z ?

• 3+4 : int
• Assuming z : int, we have 3*z : int
• So the type of let z = 3+4 in 3*z is int

5

Let Definitions vs. Let Expressions

• At the top-level, we write
– let x = e;; (* no in e2 part *)
– This is called a let definition, not a let expression

• Because it doesn’t, itself, evaluate to anything

• Omitting in means “from now on”:
let pi = 3.14;;

(* pi is now bound in the rest of the top-level scope *)

6

Let Expressions: Scope
• In let x = e1 in e2, var x is not visible outside of e2

let pi = 3.14 in pi *. 3.0 *. 3.0;;
print_float pi;;

bind pi (only) in body of let
(which is pi *. 3.0 *. 3.0)error: pi not bound

{
 float pi = 3.14;

 pi * 3.0 * 3.0;
}
pi; /* pi unbound! */

7

Examples – Scope of Let bindings
• x;; (* Unbound value x *)

• let x = 1 in x + 1;; (* 2 *)

• let x = x in x + 1;; (* Unbound value x *)

• (let x = 1 in x + 1);; x;;(* Unbound value x *)

• let x = 4 in (let x = x + 1 in x) ;; (* 5 *)

8

Nested Let Expressions

Similar scoping possibilities C and Java

let res =
 (let area =
 (let pi = 3.14 in
 let r = 3.0 in
 pi *. r *. r) in
 area /. 2.0);;

float res;
{ float area;
 { float pi = 3.14
 float r = 3.0;
 area = pi * r * r;
 }
 res = area / 2.0;
}

9

Let Expressions in Functions

• You can use let inside of functions for local vars

let area d =
 let pi = 3.14 in
 let r = d /. 2.0 in
 pi *. r *. r

10

Shadowing Names

• Shadowing is rebinding a name in an inner scope to have
a different meaning
– May or may not be allowed by the language

C
int i;

void f(float i) {
 {
 char *i = NULL;
 ...
 }
}

let x = 10 in
 let z =
 let x = 20 in
 x*2 in
 x+z. (* 50 *)

Shadowing, by the Semantics
• What if e2 is also a let for x ?

– Substitution will stop at the e2 of a shadowing x

11

Example
let x = 3+4 in let x = 3*x in x+1
- let x = 7 in let x = 3*x in x+1
- let x = 3*7 in x+1
- let x = 21 in x+1
- 21+1
- 22

Will not be substituted,
since it is shadowed
by the inner let

Quiz 1: What does this evaluate to?

A. 4
B. 6
C. 8
D. Error

12

let x = 2 in
let y = x + x in
y * x

Quiz 1: What does this evaluate to?

A. 4
B. 6
C. 8
D. Error

13

let x = 2 in
let y = x + x in
y * x

14

Quiz 2: What does this evaluate to?

A. 3
B. 2
C. true
D. false

let x = 5 in
x = 3

15

Quiz 2: What does this evaluate to?

let x = 2 in
x = 3

A. 3
B. 2
C. true
D. false

This expression is
checking whether
x is equal to 3

A. 8
B. 11

C. 13
D. 14

let y = 3 in
let x = y+2 in
let y = 6 in
x+y

16

Quiz 3: What does this evaluate to?

A. 8
B. 11

C. 13
D. 14

let y = 3 in
let x = y+2 in
let y = 6 in
x+y

17

Quiz 3: What does this evaluate to?

18

Tuples

• Constructed using (e1, …, en)
• Deconstructed using pattern matching

– Patterns involve parens and commas, e.g., (p1, p2, …)

• Tuples are similar to C structs
– But without field labels
– Allocated on the heap

• Tuples can be heterogenous
– Unlike lists, which must be homogenous
– (1, ["string1";"string2"]) is a valid tuple

19

Tuple Types

• Tuple types use * to separate components
– Type joins types of its components

• Examples
– (1, 2) :
– (1, "string", 3.5) :
– (1, ["a"; "b"], 'c') :
– [(1,2)] :
– [(1, 2); (3, 4)] :
– [(1,2); (1,2,3)] :

20

Tuple Types

• Tuple types use * to separate components
– Type joins types of its components

• Examples
– (1, 2) :
– (1, "string", 3.5) :
– (1, ["a"; "b"], 'c') :
– [(1,2)] :
– [(1, 2); (3, 4)] :
– [(1,2); (1,2,3)] :

int * int
int * string * float
int * string list * char
(int * int) list
(int * int) list
error

Because the first list element has
type int * int, but the second has
type int * int * int – list elements
must all be of the same type

21

Pattern Matching Tuples
let plus3 t =
match t with
(x, y, z) -> x + y + z;;

plus3 : int*int*int -> int = <fun>

let plus3’ (x, y, z) = x + y + z;;
plusThree’ : int*int*int -> int = <fun>

22

Tuples Are A Fixed Size
• This OCaml definition

– let foo x = match x with
(a, b) -> a + b

| (a, b, c) -> a + b + c

has a type error. Why?

• Tuples of different size have different types
– (a, b) has type: 'a * 'b
– (a, b, c) has type: 'a * 'b * 'c

A. (3,0)
B. (2,0)
C. 3
D. type error

let get a b = (a+b,0) in
get 1 2

23

Quiz 4: What does this evaluate to?

A. (3,0)
B. (2,0)
C. 3
D. type error

let get a b = (a+b,0) in
get 1 2

24

Quiz 4: What does this evaluate to?

A. 3
B. type error
C. 2
D. 1

let get (a,b) y = a+y in
get (2,1) 1

25

Quiz 5: What does this evaluate to?

A. 3
B. type error
C. 2
D. 1

26

Quiz 5: What does this evaluate to?

let get (a,b) y = a+y in
get (2,1) 1

27

Records
• Records: identify elements by name

– Elements of a tuple are identified by position

• Define a record type before defining record values

• Define a record value

type date = { month: string; day: int; year: int }

let today = { day=16; year=2017; month=“f”^“eb” };;

today : date = { day=16; year=2017; month=“feb” };;

28

Destructing Records

• Access by field name or pattern matching

type date = { month: string; day: int; year: int }
let today = { day=16; year=2017; month=“feb” };;

today.month;; (* feb *)

let { year } = today in (* binds year to 2017 *)
let { month=_; day=d } = today in
…

A. point -> int list
B. int -> int list
C. point -> point list
D. point -> int list list

type point = {x:int; y:int}

let shift { x = px } = [px]::[]

29

Quiz 6: What is the type of shift?

A. point -> int list
B. int -> int list
C. point -> point list
D. point -> int list list

type point = {x:int; y:int}

let shift { x = px } = [px]::[]

30

Quiz 6: What is the type of shift?

