
CMSC 330: Organization of Programming
Languages

Memory Management and Garbage
Collection

1CMSC 330 Spring 2024

2

Memory Attributes

Memory to store data in programming languages has the
following lifecycle

Allocation
• When the memory is allocated to the program

Lifetime
• How long allocated memory is used by the program

CMSC 330 Spring 2024

Memory Management in C
int g = 5;
int *foo(int y) {
 int *z = malloc(sizeof(int));
 *z = y+g;
 return z;
}
int main() {
 int *p = foo(3);
 free(p);
}

CMSC 330 Spring 2024 3

Static memory – (global
variable g) at a fixed
address, never freed

Memory Management in C
int g = 5;
int *foo(int y) {
 int *z = malloc(sizeof(int));
 *z = y+g;
 return z;
}
int main() {
 int *p = foo(3);
 free(p);
}

CMSC 330 Spring 2024 4

Static memory – (global
variable g) at a fixed
address, never freed

LIFO/stack memory –
(parameter y, local
variables p, z) allocated at
start of function call, freed
when function returns

Memory Management in C
int g = 5;
int *foo(int y) {
 int *z = malloc(sizeof(int));
 *z = y+g;
 return z;
}
int main() {
 int *p = foo(3);
 free(p);
}

CMSC 330 Spring 2024 5

Heap memory – allocated
when needed (by malloc),
and freed (by free) when
no longer needed

Static memory – (global
variable g) at a fixed
address, never freed

LIFO/stack memory –
(parameter y, local
variables p, z) allocated at
start of function call, freed
when function returns

6

Memory Management in Ruby, Java, OCaml

Local variables live on the stack
• Storage reclaimed when method returns

Objects, closures, tuples, etc. live on the heap
• Ruby, Java: Created with calls to Class.new
• OCaml: Allocation happens implicitly

Heap objects never explicitly freed: automatic memory
management (garbage collection)

CMSC 330 Spring 2024

Manual vs. Automatic Recovery

Manual memory management is
• Efficient – requires less storage overall
• Error prone – programmers can easily make mistakes, leading to

leaks and use-after-free errors, which have security ramifications
Automatic memory management is
• Less efficient – in space usage and latency – than manual

management
• Easy to use, more compositional – no worries about when an

object is truly dead
Ø Avoids security problems

7CMSC 330 Spring 2024

8

Automatic memory management
Primary goal: automatically reclaim dynamic memory
• Secondary goal: avoid fragmentation

Insight: You can do reclamation and avoid fragmentation (next
slide) if you can identify every pointer in a program
• You can move the allocated storage, then redirect pointers to it

Ø Compact it, to avoid fragmentation

• Compiler ensures perfect knowledge LISP, OCAML, Java, Prolog but
not in C, C++, Pascal, Ada

CMSC 330 Spring 2024

10

Strategy

At any point during execution, can divide the objects in the
heap into two classes
• Live objects will be used later
• Dead objects will never be used again

Ø They are “garbage”

Thus we need garbage collection (GC) algorithms that can
1.Distinguish live from dead objects
2.Reclaim the dead objects and retain the live ones

CMSC 330 Spring 2024

11

Determining Liveness

In most languages we can’t know for sure which objects
are really live or dead
• Undecidable, like solving the halting problem

Thus we need to make a safe approximation
• OK if we decide something is live when it’s not
• But we’d better not deallocate an object that will be used later on

CMSC 330 Spring 2024

12

Liveness by Reachability

An object is reachable if it can be accessed by
dereferencing (“chasing”) pointers from live data
Safe policy: delete unreachable objects
• An unreachable object can never be accessed again by the

program
Ø The object is definitely garbage

• A reachable object may be accessed in the future
Ø The object could be garbage but will be retained anyway
Ø Could lead to memory leaks

CMSC 330 Spring 2024

13

Roots

At a given program point, we define liveness as being data
reachable from the root set
• Global variables

Ø What are these in Java? Ruby? OCaml?
• Local variables of all live method activations

Ø I.e., the stack

At the machine level
• Also consider the register set

Ø Usually stores local or global variables

Next
• Techniques for determining reachability

CMSC 330 Spring 2024

Reference Counting

Idea: Each object has count of number of pointers to it
from the roots or other objects
• When count reaches 0, object is unreachable
• Count tracking code may be manual or automatic

In regular use
• C++ and Rust (manual: smart pointers), Cocoa (manual), Python

(automatic)
Invented by Collins in 1960
• A method for overlapping and erasure of lists. Communications

of the ACM, December 1960

CMSC 330 Spring 2024 14

15

Reference Counting Example
stack

1

1

2

CMSC 330 Spring 2024

16

Reference Counting Example (cont.)
stack

1

1

2

1

1

CMSC 330 Spring 2024

17

Reference Counting Example (cont.)
stack

1

1

2

1

1

CMSC 330 Spring 2024

18

Reference Counting Example (cont.)
stack

1

1

2

1

1

0

CMSC 330 Spring 2024

19

Reference Counting Example (cont.)
stack

1 2

1

1

CMSC 330 Spring 2024

20

Reference Counting Example (cont.)
stack

1 2

1

10

CMSC 330 Spring 2024

21

Reference Counting Example (cont.)
stack

1

CMSC 330 Spring 2024

Rust Rc Example

22

use std::rc::Rc;
fn main() {
 let s = String::from("hello");
 let r1 = Rc::new(&s);
 {
 let r2 = Rc::clone(&r1);
 println!("r1 = {}",Rc::strong_count(&r1));
 println!("r2 = {}",Rc::strong_count(&r2));
 }
 // r2 is out of scope
 println!("r1 = {}",Rc::strong_count(&r1));
}

r1 = 2
r2 = 2
r1 = 1

Output:

CMSC 330 Spring 2024

23

Reference Counting Tradeoffs

Advantage
• Incremental technique

Ø Generally small, constant amount of work per memory write
Ø With more effort, can even bound running time

Disadvantages
• Cascading decrements can be expensive
• Requires extra storage for reference counts
• Need other means to collect cycles, for which counts never go to

0

CMSC 330 Spring 2024

24

Tracing Garbage Collection

Idea: Determine reachability as needed, rather than by
stored counts, incrementally
Every so often, stop the world and
• Follow pointers from live objects (starting at roots) to expand the

live object set
Ø Repeat until no more reachable objects

• Deallocate any non-reachable objects
Two main variants of tracing GC
• Mark/sweep (McCarthy 1960) and stop-and-copy (Cheney 1970)

CMSC 330 Spring 2024

Mark and Sweep GC

Two phases
• Mark phase: trace the heap and mark all reachable objects
• Sweep phase: go through the entire heap and reclaim all

unmarked objects

25CMSC 330 Spring 2024

26

Mark and Sweep Example
stack

CMSC 330 Spring 2024

27

Mark and Sweep Example (cont.)
stack

CMSC 330 Spring 2024

28

Mark and Sweep Example (cont.)
stack

CMSC 330 Spring 2024

29

Mark and Sweep Example (cont.)
stack

CMSC 330 Spring 2024

30

Mark and Sweep Example (cont.)
stack

CMSC 330 Spring 2024

31

Mark and Sweep Example (cont.)
stack

CMSC 330 Spring 2024

32

Mark and Sweep Example (cont.)
stack

CMSC 330 Spring 2024

Mark and Sweep Example 2

34

After Mark

CMSC 330 Spring 2024

A B C D E F0 0 0 0 0 0root
free

A B C D E F1 0 1 0 1 0root
free

Mark and Sweep Example 2

35

After Mark

After Sweep

CMSC 330 Spring 2024

A B C D E F1 0 1 0 1 0root
free

A B C D E F0 0 0 0 0 0root
free

Free list: F->B->D

36

Mark and Sweep Advantages

No problem with cycles
Non-moving
• Live objects stay where they are
• Makes conservative GC possible

Ø Used when identification of pointer vs. non-pointer uncertain
Ø More later

CMSC 330 Spring 2024

37

Mark and Sweep Disadvantages

Fragmentation
• Available space broken up into many small pieces

Ø Thus many mark-and-sweep systems may also have a compaction phase
(like defragmenting your disk)

Cost proportional to heap size
• Sweep phase needs to traverse whole heap – it touches dead

memory to put it back on to the free list

CMSC 330 Spring 2024

38

Copying GC

Like mark and sweep, but only touches live objects
• Divide heap into two equal parts (semispaces)
• Only one semispace active at a time
• At GC time, flip semispaces

1. Trace the live data starting from the roots
2. Copy live data into other semispace
3. Declare everything in current semispace dead
4. Switch to other semispace

CMSC 330 Spring 2024

39

Copying GC Example
stack

CMSC 330 Spring 2024

40

Copying GC Example (cont.)
stack

①

①
CMSC 330 Spring 2024

41

Copying GC Example (cont.)
stack

①

①

②

②

CMSC 330 Spring 2024

42

Copying GC Example (cont.)
stack

①

①

②

②

③

③

CMSC 330 Spring 2024

Copying GC Example 2

43

New space

CMSC 330 Spring 2024

Copying GC Example 2

44CMSC 330 Spring 2024

45

Copying GC Tradeoffs

Advantages
• Only touches live data
• No fragmentation (automatically compacts)

Ø Will probably increase locality

Disadvantages
• Requires twice the memory space

CMSC 330 Spring 2024

Conservative Garbage Collection (for C)

For C, we can’t be sure which words are pointers
• Due to incomplete type information, the use of unsafe casts, etc.

Idea: suppose it is a pointer if it looks like one
• Most pointers are within a certain address range, they are word

aligned, etc.
• May retain dead memory (floating point # looks like a pointer)

Different styles of conservative collector
• Mark-sweep: important that objects not moved
• Mostly-copying: can move objects you are sure of

CMSC 330 Spring 2024 54

Stop the World: Potentially Long Pause

Both of the previous algorithms “stop the world” by
prohibiting program execution during GC
• Ensures that previously processed memory is not changed or

accessed, creating inconsistency
• But the execution pause could be too long

How can we reduce the pause time of GC? Ideas:
• Incremental: Collect a little at a time
• Parallel: Do GC in multiple threads at once
• Concurrent: Do GC while main program is running

55CMSC 330 Spring 2024

56

The Generational Principle

Object lifetime increases Þ

M
or

e
ob

je
ct

s l
iv

e
Þ

“Young
objects
die quickly;
old objects
keep living”

CMSC 330 Spring 2024

57

Generational Collection

Long lived objects visited multiple times
• Idea: Have more than one heap region, divide into generations

Ø Older generations collected less often
Ø Objects that survive many collections get promoted into older generations
Ø Need to track pointers from old to young generations to use as roots for

young generation collection
• Tracking one in the remembered set

One popular setup: Generational, copying GC

CMSC 330 Spring 2024

58

What Does GC Mean to You?

Ideally, nothing
• GC should make programming easier
• GC should not affect performance (much)

Usually bad idea to manage memory yourself
• Using object pools, free lists, object recycling, etc…
• GC implementations have been heavily tuned

Ø May be more efficient than explicit deallocation

If GC becomes a problem, hard to solve
• You can set parameters of the GC
• You can modify your program

CMSC 330 Spring 2024

59

Increasing Memory Performance

Don’t allocate as much memory
• Less work for your application
• Less work for the garbage collector

Don’t hold on to references
• Null out pointers in data structures
• Example

Object a = new Object;
…use a…
a = null; // when a is no longer needed

CMSC 330 Spring 2024

60

Find the Memory Leak
class Stack {
 private Object[] stack;
 private int index;
 public Stack(int size) {
 stack = new Object[size];
 }
 public void push(Object o) {
 stack[index++] = o;
 }
 public void pop() {

 return stack[index--];
 }
 }
From Haggar, Garbage Collection and the Java Platform Memory Model

CMSC 330 Spring 2024

61

Find the Memory Leak
class Stack {
 private Object[] stack;
 private int index;
 public Stack(int size) {
 stack = new Object[size];
 }
 public void push(Object o) {
 stack[index++] = o;
 }
 public void pop() {

 return stack[index--];
 }
 }
From Haggar, Garbage Collection and the Java Platform Memory Model

Answer: pop() leaves item on stack array; storage not reclaimed

stack[index] = null; // null out ptr

CMSC 330 Spring 2024

