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Turing Completeness

Turing machines are the most powerful 
description of computation possible
• They define the Turing-computable functions

A programming language is Turing complete if
• It can map every Turing machine to a program
• A program can be written to emulate a Turing machine
• It is a superset of a known Turing-complete language

Most powerful programming language possible
• Since Turing machine is most powerful automaton
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Programming Language Expressiveness

So what language features are needed to express 
all computable functions?
• What’s a minimal language that is Turing Complete?

Observe: some features exist just for convenience
• Multi-argument functions foo ( a, b, c )

Ø Use currying or tuples
• Loops    while (a < b) …

Ø Use recursion
• Side effects   a := 1

Ø Use functional programming pass “heap” as an argument to 
each function, return it when with function’s result:
        effectful : ‘a → ‘s → (‘s * ‘a)
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Programming Language Expressiveness

It is not difficult to achieve Turing Completeness
• Lots of things are ‘accidentally’ TC

Some fun examples:
• x86_64 `mov` instruction
• Minecraft   
• Magic: The Gathering
• Java Generics

There’s a whole cottage industry of proving things 
to be TC
But: What is a “core” language that is TC?
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Lambda Calculus (λ-calculus)

Proposed in 1930s by
• Alonzo Church 
   (born in Washingon DC!)

Formal system
• Designed to investigate functions & recursion
• For exploration of foundations of mathematics

Now used as
• Tool for investigating computability
• Basis of functional programming languages

Ø Lisp, Scheme, ML, OCaml, Haskell…
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Why Study Lambda Calculus?
It is a “core” language 
• Very small but still Turing complete

But with it can explore general ideas
• Language features, semantics, proof systems, 

algorithms, …
Plus, higher-order, anonymous functions (aka 
lambdas) are now very popular!
• C++ (C++11), PHP (PHP 5.3.0), C# (C# v2.0), Delphi 

(since 2009), Objective C, Java 8, Swift, Python, 
Ruby (Procs), … (and functional languages like 
OCaml, Haskell, F#, …)

• Excel, as of 2021!
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Lambda Calculus Syntax

A lambda calculus expression is defined as
 e ::= x   variable
     |  λx.e   abstraction (fun def)
     |  e e   application (fun call)

Ø This grammar describes ASTs; not for parsing - ambiguous!
Ø Lambda expressions also known as lambda terms

• λx.e is like (fun x -> e) in OCaml
That’s it!  Nothing but higher-order functions
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Three Conventions

Scope of λ extends as far right as possible
• Subject to scope delimited by parentheses
• λx. λy.x y is same as λx.(λy.(x y))

Function application is left-associative
• x y z is (x y) z
• Same rule as OCaml

As a convenience, we use the following “syntactic 
sugar” for local declarations
• let x = e1 in e2 is short for (λx.e2) e1



Quiz #1
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A. True
B. False

λx.(y z) and λx.y z are equivalent



Quiz #1

λx.(y z) and λx.y z are equivalent
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A.True
B. False



Quiz #2

This term is equivalent to which of 
the following? 

λx.x a b
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A. (λx.x) (a b)
B. (((λx.x) a) b)
C.  λx.(x (a b))
D. (λx.((x a) b))



Quiz #2

This term is equivalent to which of 
the following? 

λx.x a b
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A. (λx.x) (a b)
B. (((λx.x) a) b)
C.  λx.(x (a b))
D. (λx.((x a) b))
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Lambda Calculus Semantics
Evaluation: All that’s involved are function calls 
(λx.e1) e2
• Evaluate e1 with x replaced by e2

This application is called beta-reduction
• (λx.e1) e2 → e1[x:=e2]

Ø e1[x:=e2] is e1 with occurrences of x replaced by e2
Ø This operation is called substitution

• Replace formals with actuals
• Instead of using environment to map formals to actuals

• We allow reductions to occur anywhere in a term
Ø Order reductions are applied does not affect final value!

When a term cannot be reduced further it is in 
beta normal form
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Beta Reduction Example

(λx.λz.x z) y   
→ (λx.(λz.(x z))) y // since λ extends to right

→ (λx.(λz.(x z))) y // apply (λx.e1) e2 → e1[x:=e2]
     // where e1 = λz.(x z), e2 = y

→ λz.(y z)   // final result

Equivalent OCaml code
• (fun x -> (fun z -> (x z))) y   →   fun z -> (y z)

Parameters
• Formal
• Actual



16

Two Varieties

There are two common variants of big-step 
semantics

l Eager evaluation (aka strict, or call by value)
l Lazy evaluation (aka call by name)
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Call by Value

Before doing a beta reduction, we make sure the 
argument cannot, itself, be further evaluated
This is known as call-by-value (CBV)

This is the Eager big step approach

e2 → e3
e1 e2 → e1 e3

e = (λx.e2) or e = y
(λx.e1) e → e1[x:=e]

e1 → e3
e1 e2 → e3 e2
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Beta Reductions (CBV)

(λx.x) z →

(λx.y) z →

(λx.x y) z →
• A function that applies its argument to y

z

y

z y
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Beta Reductions (CBV)

(λx.x y) (λz.z) →

(λx.λy.x y) z →
• A curried function of two arguments 
• Applies its first argument to its second

(λx.λy.x y) (λz.zz) x →

(λz.z) y → y

λy.z y

(λy.(λz.zz)y)x → (λz.zz)x →x x



Quiz #3

(λx.y) z can be beta-reduced to  
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A. y
B. y z
C.z
D. cannot be reduced



Quiz #3

(λx.y) z can be beta-reduced to  
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A. y
B. y z
C.z
D. cannot be reduced



Quiz #4

Which of the following reduces to λz. z?

a)    (λy. λz. x) z
b)    (λz. λx. z) y    
c)    (λy. y) (λx. λz. z) w
d)    (λy. λx. z) z (λz. z)

22



Quiz #4

Which of the following reduces to λz. z?

a)    (λy. λz. x) z
b)    (λz. λx. z) y    
c)    (λy. y) (λx. λz. z) w
d)    (λy. λx. z) z (λz. z)

23
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Call by Name

Instead of the CBV strategy, we can specifically 
choose to perform beta-reduction before we 
evaluate the argument
This is known as call-by-name (CBN)

This is the Lazy small-step approach

e1 → e3
e1 e2 → e3 e2

(λx.e1) e2 → e1[x:=e2]



CBN Reduction

CBV
• (λz.z) ((λy.y) x) → (λz.z) x → x

CBN
• (λz.z) ((λy.y) x) → (λy.y) x → x

25



Beta Reductions (CBN)

(λx.x (λy.y)) (u r) →

(λx.(λw. x w)) (y z) → 

26



Beta Reductions (CBN)

(λx.x (λy.y)) (u r) → (u r) (λy.y)

(λx.(λw. x w)) (y z) → (λw. (y z) w)

27
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Static Scoping & Alpha Conversion

Lambda calculus uses static scoping

Consider the following
• (λx.x (λx.x)) z → ?

Ø The rightmost “x” refers to the second binding
• This is a function that 

Ø Takes its argument and applies it to the identity function

This function is “the same” as (λx.x (λy.y))
• Renaming bound variables consistently preserves meaning

Ø This is called alpha-renaming or alpha conversion
• Ex. λx.x = λy.y = λz.z     λy.λx.y = λz.λx.z



Quiz #5
Which of the following expressions is alpha 
equivalent to (alpha-converts from) 

(λx. λy. x y) y

a) λy. y y    
b) λz. y z    
c) (λx. λz. x z) y   
d) (λx. λy. x y) z
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Quiz #5
Which of the following expressions is alpha 
equivalent to (alpha-converts from) 

(λx. λy. x y) y

a) λy. y y    
b) λz. y z    
c) (λx. λz. x z) y   
d) (λx. λy. x y) z

30



Defining Substitution
Use recursion on structure of terms
• x[x:=e] = e // Replace x by e
• y[x:=e] = y // y is different than x, so no effect
• (e1 e2)[x:=e] = (e1[x:=e]) (e2[x:=e])
   // Substitute both parts of application
• (λx.e’)[x:=e] = λx.e’

• (λy.e’)[x:=e] = ?
• (λy.(e’[x:=e]))  If x ∉ (fvs e)

• (λy. x y) z = (λy. z y) 
• (λy.(e’[x:=e]))  alpha-convert e’ if x ∈ (fvs e)

• (λy. x y) y = (λz. x z) y= λz. y z

31
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Variable Capture
How about the following?
• (λx.λy.x y) y → ?
• When we replace y inside, we don’t want it to be 

captured by the inner binding of y, as this violates 
static scoping

• I.e., (λx.λy.x y) y ≠ λy.y y

Solution
• (λx.λy.x y) is “the same” as (λx.λz.x z) 

Ø Due to alpha conversion
• So alpha-convert (λx.λy.x y) y to (λx.λz.x z) y first

Ø Now (λx.λz.x z) y → λz.y z



Completing the Definition of Substitution

Recall:  we need to define (λy.e’)[x:=e]
• We want to avoid capturing (free) occurrences of y in e
• Solution:  alpha-conversion!

Ø Change y to a variable w that does not appear in e’ or e 
(Such a w is called fresh)

Ø Replace all occurrences of y in e’ by w.
Ø Then replace all occurrences of x in e’ by e!

Formally:
(λy.e’)[x:=e] = λw.((e’ [y:=w]) [x:=e]) (w is fresh)

33
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Beta-Reduction, Again

Whenever we do a step of beta reduction
• (λx.e1) e2 → e1[x:=e2]
• We must alpha-convert variables as necessary
• Sometimes performed implicitly (w/o showing 

conversion)

Examples
• (λx.λy.x y) y = (λx.λz.x z) y → λz.y z // y → z
• (λx.x (λx.x)) z = (λy.y (λx.x)) z → z (λx.x) // x → y



Quiz #6

Beta-reducing the following term produces what 
result?

(λx.x λy.y x) y

35

A. y (λz.z y) 
B. z (λy.y z) 
C. y (λy.y y) 
D. y y



Quiz #6

Beta-reducing the following term produces what 
result?

(λx.x λy.y x) y

36

A. y (λz.z y) 
B. z (λy.y z) 
C. y (λy.y y) 
D. y y



Quiz #7
Beta reducing the following term produces what 
result?

λx.(λy. y y) w z

 a) λx. w w z    
 b) λx. w z    
 c) w z       
 d) Does not reduce

37



Quiz #7
Beta reducing the following term produces what 
result?

λx.(λy. y y) w z

 a) λx. w w z    
 b) λx. w z    
 c) w z    
 d) Does not reduce

38
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Lambda Calc, Impl in OCaml

e ::= x
      |  λx.e 
      |  e e

y
λx.x
λx.λy.x y
(λx.λy.x y) λx.x x

type id = string
    type exp = Var of id
    | Lam of id * exp
    | App of exp * exp

Var “y”

Lam (“x”, Var “x”)

Lam (“x”,(Lam(“y”,App (Var “x”, Var “y”))))
      App 
        (Lam(“x”,Lam(“y”,App(Var“x”,Var“y”))), 
         Lam (“x”, App (Var “x”, Var “x”)))



Quiz #8

What is this term’s AST? 

λx.x x

40

A.  App (Lam (“x”, Var “x”), Var “x”)
B.  Lam (Var “x”, Var “x”, Var “x”)
C.  Lam (“x”, App (Var “x”,Var “x”))
D.  App (Lam (“x”, App (“x”, “x”)))

type id = string
type exp = 
      Var of id
    | Lam of id * exp
    | App of exp * exp



Quiz #8

What is this term’s AST? 

λx.x x

41

A.  App (Lam (“x”, Var “x”), Var “x”)
B.  Lam (Var “x”, Var “x”, Var “x”)
C.  Lam (“x”, App (Var “x”,Var “x”))
D.  App (Lam (“x”, App (“x”, “x”)))

type id = string
type exp = 
      Var of id
    | Lam of id * exp
    | App of exp * exp
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The Power of Lambdas

To give a sense of how one can encode various 
constructs into LC we’ll be looking at some 
concrete examples:
• Let bindings
• Booleans
• Pairs
• Natural numbers & arithmetic
• Looping



Let bindings

Local variable declarations are like defining a 
function and applying it immediately (once):
• let x = e1 in e2 = (λx.e2) e1

Example
• let x = (λy.y) in x x = (λx.x x) (λy.y) 

where 
(λx.x x) (λy.y) → (λx.x x) (λy.y) → (λy.y) (λy.y) → (λy.y) 

43



44

Booleans

Church’s encoding of mathematical logic
• true = λx.λy.x
• false = λx.λy.y
• if a then b else c

Ø Defined to be the expression: a b c

Examples
• if true then b else c = (λx.λy.x) b c → (λy.b) c → b
• if false then b else c = (λx.λy.y) b c → (λy.y) c → c
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Booleans (cont.)

Other Boolean operations
• not = λx.x false true

Ø not x = x false true = if x then false else true
Ø not true → (λx.x false true) true → (true false true) → false

• and = λx.λy.x y false
Ø and x y = if x then y else false

• or = λx.λy.x true y
Ø or x y = if x then true else y

Given these operations
• Can build up a logical inference system



Quiz #9

What is the lambda calculus encoding of xor x y?
xor true true = xor false false = false
xor true false = xor false true = true

x x y
x (y true false) y
x (y false true) y
y x y

46

true = λx.λy.x
false = λx.λy.y
if a then b else c = a b c
not = λx.x false true



Quiz #9

What is the lambda calculus encoding of xor x y?
xor true true = xor false false = false
xor true false = xor false true = true

x x y
x (y true false) y
x (y false true) y
y x y

47

true = λx.λy.x
false = λx.λy.y
if a then b else c = a b c
not = λx.x false true
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Pairs
Encoding of a pair a, b
• (a,b) = λx.if x then a else b
• fst = λf.f true
• snd = λf.f false

Examples
• fst (a,b) = (λf.f true) (λx.if x then a else b) →
     (λx.if x then a else b) true →
     if true then a else b → a
• snd (a,b) = (λf.f false) (λx.if x then a else b) →
     (λx.if x then a else b) false →
     if false then a else b → b
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Natural Numbers (Church* Numerals) 

Encoding of non-negative integers
• 0 = λf.λy.y
• 1 = λf.λy.f y
• 2 = λf.λy.f (f y)
• 3 = λf.λy.f (f (f y))
 i.e., n = λf.λy.<apply f n times to y>
• Formally:  n+1 = λf.λy.f (n f y)

*(Alonzo Church, of course)



Quiz #10

What OCaml type could you give to a Church-
encoded numeral?

(’a -> ‘b) -> ‘a -> ‘b
(‘a -> ‘a) -> ‘a -> ‘a
(‘a -> ‘a) -> ‘b -> int
(int -> int) -> int -> int

50

n = λf.λy.<apply f n times to y>



Quiz #10

What OCaml type could you give to a Church-
encoded numeral?

(’a -> ‘b) -> ‘a -> ‘b
(‘a -> ‘a) -> ‘a -> ‘a
(‘a -> ‘a) -> ‘b -> int
(int -> int) -> int -> int

51

n = λf.λy.<apply f n times to y>
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Operations On Church Numerals 

Successor
• succ = λz.λf.λy.f (z f y)

Example
• succ 0 =
 (λz.λf.λy.f (z f y)) (λf.λy.y) →
 λf.λy.f ((λf.λy.y) f y) →
 λf.λy.f ((λy.y) y) →
 λf.λy.f y
   = 1

Since (λx.y) z → y 

• 0 = λf.λy.y
• 1 = λf.λy.f y
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Operations On Church Numerals (cont.)

IsZero?
• iszero = λz.z (λy.false) true
 This is equivalent to λz.((z (λy.false)) true)

Example
• iszero 0 =
 (λz.z (λy.false) true) (λf.λy.y) →
 (λf.λy.y) (λy.false) true →
 (λy.y) true →
 true

• 0 = λf.λy.y

Since (λx.y) z → y 
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Arithmetic Using Church Numerals

If M and N are numbers (as λ expressions)
• Can also encode various arithmetic operations

Addition
• M + N = λf.λy.M f (N f y)
 Equivalently: + = λM.λN.λf.λy.M f (N f y)

Ø In prefix notation (+ M N)

Multiplication
• M * N = λf.M (N f)
 Equivalently: * = λM.λN.λf.λy.M (N f) y

Ø In prefix notation (* M N)
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Arithmetic (cont.)

Prove 1+1 = 2
• 1+1 = λx.λy.(1 x) (1 x y) = 
• λx.λy.((λf.λy.f y) x) (1 x y) → 
• λx.λy.(λy.x y) (1 x y) →
• λx.λy.x (1 x y) →
• λx.λy.x ((λf.λy.f y) x y) →
• λx.λy.x ((λy.x y) y) →
• λx.λy.x (x y) = 2

With these definitions
• Can build a theory of arithmetic

• 1 = λf.λy.f y
• 2 = λf.λy.f (f y)
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Arithmetic Using Church Numerals

What about subtraction?
• Easy once you have ‘predecessor’, but...
• Predecessor is very difficult!

Story time:
• One of Church’s students, Kleene (of Kleene-star 

fame) was struggling to think of how to encode 
‘predecessor’, until it came to him during a trip to the 
dentists office.

• Take from this what you will
Wikipedia has a great derivation of 
‘predecessor’, not enough time today.
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Looping+Recursion

So far we have avoided self-reference, so how 
does recursion work?
We can construct a lambda term that ‘replicates’ 
itself:
• Define D = λx.x x, then

l D D = (λx.x x) (λx.x x) → (λx.x x) (λx.x x) = D D
• D D is an infinite loop

We want to generalize this, so that we can make 
use of looping
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The Fixpoint Combinator

Y = λf.(λx.f (x x)) (λx.f (x x))
Then
Y F =
(λf.(λx.f (x x)) (λx.f (x x))) F →
(λx.F (x x)) (λx.F (x x)) →
F ((λx.F (x x)) (λx.F (x x)))
= F (Y F)

Y F is a fixed point (aka fixpoint) of F
Thus Y F = F (Y F) = F (F (Y F)) = ...
• We can use Y to achieve recursion for F
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Example

fact = λf.λn.if n = 0 then 1 else n * (f (n-1))
• The second argument to fact is the integer
• The first argument is the function to call in the body

Ø We’ll use Y to make this recursively call fact

(Y fact) 1 = (fact (Y fact)) 1
   → if 1 = 0 then 1 else 1 * ((Y fact) 0)
   → 1 * ((Y fact) 0)
    = 1 * (fact (Y fact) 0)
   → 1 * (if 0 = 0 then 1 else 0 * ((Y fact) (-1))
   → 1 * 1 → 1



Factorial 4=?
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(Y G) 4 
 G (Y G) 4 
(λr.λn.(if n = 0 then 1  else n × (r (n−1)))) (Y G) 4
(λn.(if n = 0 then 1 else n × ((Y G) (n−1)))) 4
if 4 = 0 then 1 else 4 × ((Y G) (4−1))
4 × (G (Y G) (4−1))
4 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (4−1))
4 × (1, if 3 = 0; else 3 × ((Y G) (3−1)))
4 × (3 × (G (Y G) (3−1)))
4 × (3 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (3−1)))
4 × (3 × (1, if 2 = 0; else 2 × ((Y G) (2−1))))
4 × (3 × (2 × (G (Y G) (2−1))))
4 × (3 × (2 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (2−1))))
4 × (3 × (2 × (1, if 1 = 0; else 1 × ((Y G) (1−1)))))
4 × (3 × (2 × (1 × (G (Y G) (1−1)))))
4 × (3 × (2 × (1 × ((λn.(1, if n = 0; else n × ((Y G) (n−1)))) (1−1)))))
4 × (3 × (2 × (1 × (1, if 0 = 0; else 0 × ((Y G) (0−1))))))
4 × (3 × (2 × (1 × (1))))
24
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Discussion
Lambda calculus is Turing-complete 
• Most powerful language possible
• Can represent pretty much anything in “real” language

Ø Using clever encodings

But programs would be 
• Pretty slow (10000 + 1 → thousands of function calls)
• Pretty large (10000 + 1 → hundreds of lines of code)
• Pretty hard to understand (recognize 10000 vs. 9999)

In practice
• We use richer, more expressive languages
• That include built-in primitives
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The Need For Types
Consider the untyped lambda calculus
• false = λx.λy.y
• 0 = λx.λy.y

Since everything is encoded as a function...
• We can easily misuse terms…

Ø false 0 → λy.y
Ø if 0 then ...

…because everything evaluates to some function
The same thing happens in assembly language
• Everything is a machine word (a bunch of bits)
• All operations take machine words to machine words
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Simply-Typed Lambda Calculus (STLC)

e ::= n | x | λx:t.e | e e
• Added integers n as primitives

Ø Need at least two distinct types (integer & function)… 
Ø …to have type errors

• Functions now include the type t of their argument

t ::= int | t → t
• int is the type of integers
• t1 → t2 is the type of a function 

Ø That takes arguments of type t1 and returns result of type t2



Types are limiting

STLC will reject some terms as ill-typed, even if 
they will not produce a run-time error
• Cannot type check Y in STLC

Ø Or in OCaml, for that matter, at least not as written earlier.

Surprising theorem: All (well typed) simply-typed 
lambda calculus terms are strongly normalizing
• A normal form is one that cannot be reduced further

Ø A value is a kind of normal form
• Strong normalization means STLC terms always 

terminate 
Ø Proof is not by straightforward induction: Applications 

“increase” term size
64



65

Summary

Lambda calculus is a core model of computation
• We can encode familiar language constructs using 

only functions
Ø These encodings are enlightening – make you a better 

(functional) programmer

Useful for understanding how languages work
• Ideas of types, evaluation order, termination, proof 

systems, etc. can be developed in lambda calculus,
Ø then scaled to full languages


