CMSC 330: Organization of Programming Languages

Lambda Calculus

Turing Machine

Turing Completeness

- Turing machines are the most powerful description of computation possible
- They define the Turing-computable functions
- A programming language is Turing complete if
- It can map every Turing machine to a program
- A program can be written to emulate a Turing machine
- It is a superset of a known Turing-complete language
- Most powerful programming language possible
- Since Turing machine is most powerful automaton

Programming Language Expressiveness

- So what language features are needed to express all computable functions?
- What's a minimal language that is Turing Complete?
- Observe: some features exist just for convenience
- Multi-argument functions foo (a, b, c)
> Use currying or tuples
- Loops
> Use recursion
- Side effects
$a:=1$
> Use functional programming pass "heap" as an argument to each function, return it when with function's result:

$$
\text { effectful : ‘a } \rightarrow \text { 's } \rightarrow \text { ('s * `a) }
$$

Programming Language Expressiveness

- It is not difficult to achieve Turing Completeness
- Lots of things are 'accidentally' TC
- Some fun examples:
- x86_64 `mov` instruction
- Minecraft
- Magic: The Gathering
- Java Generics
- There's a whole cottage industry of proving things to be TC
- But: What is a "core" language that is TC?

Lambda Calculus (λ-calculus)

- Proposed in 1930s by
- Alonzo Church
(born in Washingon DC!)
- Formal system

- Designed to investigate functions \& recursion
- For exploration of foundations of mathematics
- Now used as
- Tool for investigating computability
- Basis of functional programming languages
> Lisp, Scheme, ML, OCaml, Haskell...

Why Study Lambda Calculus?

- It is a "core" language
- Very small but still Turing complete
- But with it can explore general ideas
- Language features, semantics, proof systems, algorithms, ...
- Plus, higher-order, anonymous functions (aka lambdas) are now very popular!
- C++ (C++11), PHP (PHP 5.3.0), C\# (C\# v2.0), Delphi (since 2009), Objective C, Java 8, Swift, Python, Ruby (Procs), ... (and functional languages like OCaml, Haskell, F\#, ...)
- Excel, as of 2021!

Lambda Calculus Syntax

- A lambda calculus expression is defined as
e ::= x
| $\lambda x . e$
| ee
variable abstraction (fun def) application (fun call)
> This grammar describes ASTs; not for parsing - ambiguous!
> Lambda expressions also known as lambda terms
- $\lambda x . e$ is like (fun x-> e) in OCaml

That's it! Nothing but higher-order functions

Three Conventions

- Scope of λ extends as far right as possible
- Subject to scope delimited by parentheses
- $\lambda x . \lambda y . x$ y is same as λx.($\lambda y .(x y))$
- Function application is left-associative
- $x y z$ is ($x y$) z
- Same rule as OCaml
- As a convenience, we use the following "syntactic sugar" for local declarations
- let $x=e 1$ in e2 is short for ($\lambda x . e 2$) e1

Quiz \#1

$\lambda x .(y z)$ and $\lambda x . y z$ are equivalent
A. True
B. False

Quiz \#1

$\lambda x .(y z)$ and $\lambda x . y z$ are equivalent

A. True
B. False

Quiz \#2

This term is equivalent to which of the following?

$\lambda x . x$ a b

A. $(\lambda x \cdot x)(a b)$
B. $\left(\left(\begin{array}{l}(\lambda x \cdot x) \\ \text { C. } \\ \text { C }\end{array}\right)\right.$ b) $(x \quad(a b))$
D. $\left(\lambda x \cdot\left(\begin{array}{ll}x & a)\end{array}\right)\right)$

Quiz \#2

This term is equivalent to which of the following?

$\lambda x . x$ a b

A. $(\lambda x \cdot x)(a b)$
B. $\left(\left(\begin{array}{l}(\lambda x \cdot x) \\ \text { C. } \\ \text { a }\end{array}\right) \quad(x)(a b)\right)$
D. $\left(\lambda x \cdot\left(\begin{array}{ll}x & a)\end{array}\right)\right)$

Lambda Calculus Semantics

- Evaluation: All that's involved are function calls ($\lambda x . e 1$) e2
- Evaluate e1 with x replaced by e2
- This application is called beta-reduction
- ($\lambda x . e 1$) $\mathrm{e} 2 \rightarrow \mathrm{e} 1[\mathrm{x}:=\mathrm{e} 2]$
$>e 1[x:=e 2]$ is $e 1$ with occurrences of x replaced by e2
> This operation is called substitution
- Replace formals with actuals
- Instead of using environment to map formals to actuals
- We allow reductions to occur anywhere in a term
> Order reductions are applied does not affect final value!
- When a term cannot be reduced further it is in beta normal form

Beta Reduction Example

- $(\lambda x . \lambda z . x z) y$
$\rightarrow(\lambda x .(\lambda z .(x z))) y$

// apply (λ x.e1) e2 $\rightarrow \mathrm{e} 1[\mathrm{x}:=\mathrm{e} 2]$
// where e1 = $\lambda z .(x z), e 2=y$
$\rightarrow \lambda z .(y \mathrm{z})$
- Equivalent OCaml code
- (fun x -> (fun z -> (x z))) y \rightarrow fun z -> (y z)

Two Varieties

- There are two common variants of big-step semantics
- Eager evaluation (aka strict, or call by value)
- Lazy evaluation (aka call by name)

Call by Value

- Before doing a beta reduction, we make sure the argument cannot, itself, be further evaluated
- This is known as call-by-value (CBV)
- This is the Eager big step approach

$$
\frac{e=(\lambda x . e 2) \text { or } e=y}{(\lambda x . e 1) e \rightarrow e 1[x:=e]}
$$

Beta Reductions (CBV)

- $(\lambda x . x) Z \rightarrow Z$
- $(\lambda x . y) z \rightarrow y$
- $(\lambda x . x y) z \rightarrow z y$
- A function that applies its argument to y

Beta Reductions (CBV)

- ($\lambda x . x y)(\lambda z . z) \rightarrow(\lambda z . z) y \rightarrow y$
- ($\lambda x . \lambda y . x y) z \rightarrow \quad \lambda y . z y$
- A curried function of two arguments
- Applies its first argument to its second
$\rightarrow(\lambda x . \lambda y . x y)(\lambda z . z z) x \rightarrow(\lambda y .(\lambda z . z z) y) x \rightarrow(\lambda z . z z) x \rightarrow x x$

Quiz \#3

($\boldsymbol{\lambda x} \cdot \mathrm{y}$) z can be beta-reduced to

A. y
B. $y z$
C. z
D. cannot be reduced

Quiz \#3

($\lambda \mathrm{x} \cdot \mathrm{y}$) z can be beta-reduced to

A. y
B. $y z$
C. z
D. cannot be reduced

Quiz \#4

Which of the following reduces to $\lambda z . z$?
a) $(\lambda y, \lambda z . x) z$
b) $(\lambda z . \lambda x . z) y$
c) $(\lambda y . y)(\lambda x . \lambda z . z) w$
d) $(\lambda y, \lambda x . z) z(\lambda z, z)$

Quiz \#4

Which of the following reduces to $\lambda z . z$?
a) $(\lambda y, \lambda z, x) z$
b) $(\lambda z . \lambda x . z) y$
c) $(\lambda y . y)(\lambda x . \lambda z . z) w$
d) $(\lambda y . \lambda x . z) z(\lambda z . z)$

Call by Name

- Instead of the CBV strategy, we can specifically choose to perform beta-reduction before we evaluate the argument
- This is known as call-by-name (CBN)
- This is the Lazy small-step approach
$\frac{\mathrm{e} 1 \rightarrow \text { e3 }}{\mathrm{e} 1 \mathrm{e} 2 \rightarrow \text { e3 e2 }}$

$$
(\lambda x . e 1) \text { e2 } \rightarrow \text { e1[x:=e2] }
$$

CBN Reduction

- CBV
- $(\lambda z . z)((\lambda y . y) x) \rightarrow(\lambda z . z) x \rightarrow x$
- CBN
- $(\lambda z . z)((\lambda y . y) x) \rightarrow(\lambda y . y) x \rightarrow x$

Beta Reductions (CBN)

$(\lambda x . x(\lambda y . y))(u r) \rightarrow$
$(\lambda x .(\lambda w . x w))(y z) \rightarrow$

Beta Reductions (CBN)

$(\lambda x . x(\lambda y . y))(u r) \rightarrow(u r)(\lambda y . y)$
$(\lambda x .(\lambda w . x w))(y z) \rightarrow(\lambda w .(y z) w)$

Static Scoping \& Alpha Conversion

- Lambda calculus uses static scoping
- Consider the following
- ($\lambda x . x(\lambda x . x)) z \rightarrow$?
> The rightmost " x " refers to the second binding
- This is a function that
> Takes its argument and applies it to the identity function
- This function is "the same" as ($\lambda x . x(\lambda y . y))$
- Renaming bound variables consistently preserves meaning
> This is called alpha-renaming or alpha conversion
- Ex. $\lambda x . x=\lambda y . y=\lambda z . z \quad \lambda y . \lambda x . y=\lambda z . \lambda x . z$

Quiz \#5

Which of the following expressions is alpha equivalent to (alpha-converts from)
($\lambda x . \lambda y . x y) y$
a) λy. y y
b) λz. $y z$
c) $(\lambda x . \lambda z, x z) y$
d) $(\lambda x, \lambda y \cdot x y) z$

Quiz \#5

Which of the following expressions is alpha equivalent to (alpha-converts from)
($\lambda x . \lambda y . x y) y$
a) λy. y y
b) $\lambda z . y z$
c) $(\lambda x . \lambda z . x z) y$
d) $(\lambda x . \lambda y \cdot x y) z$

Defining Substitution

- Use recursion on structure of terms
- $x[x:=e]=e \quad / /$ Replace x by e
- $y[x:=e]=y \quad / / y$ is different than x, so no effect
- (e1 e2)[x:=e] = (e1[x:=e]) (e2[x:=e]) // Substitute both parts of application
- $\left(\lambda x . e^{\prime}\right)[x:=e]=\lambda x . e^{\prime}$
- ($\left.\lambda \mathrm{y} . \mathrm{e}^{\prime}\right)[\mathrm{x}:=\mathrm{e}]=$?
- ($\lambda \mathrm{y} .\left(\mathrm{e}^{\prime}[\mathrm{x}:=\mathrm{e}]\right)$) If $\mathrm{x} \notin(\mathrm{fvs} \mathrm{e})$
- $(\lambda y . x y) z=(\lambda y . z y)$
- ($\left.\lambda y .\left(e^{\prime}[x:=e]\right)\right)$ alpha-convert e' if $x \in$ (fvs e)
- $(\lambda y . x y) y=(\lambda z . x z) y=\lambda z . y z$

Variable Capture

- How about the following?
- ($\lambda x . \lambda y . x$ y) y \rightarrow ?
- When we replace y inside, we don't want it to be captured by the inner binding of y, as this violates static scoping
- I.e., ($\lambda x . \lambda y . x$ y) y $\neq \lambda y . \mathrm{y}$ y
- Solution
- ($\lambda x . \lambda y . x y$) is "the same" as ($\lambda x . \lambda z . x z$)
> Due to alpha conversion
- So alpha-convert ($\lambda x . \lambda y . x$ y) y to ($\lambda x . \lambda z . x z$) y first
> Now ($\lambda x . \lambda z . x z) y \rightarrow \lambda z . y z$

Completing the Definition of Substitution

- Recall: we need to define ($\left.\lambda \mathrm{y} . \mathrm{e}^{\prime}\right)[\mathrm{x}:=\mathrm{e}]$
- We want to avoid capturing (free) occurrences of y in e
- Solution: alpha-conversion!
> Change y to a variable w that does not appear in e' or e (Such a w is called fresh)
> Replace all occurrences of y in e' by w.
> Then replace all occurrences of x in e' by e!
- Formally:
$\left(\lambda y . e^{\prime}\right)[x:=e]=\lambda w .\left(\left(e^{\prime}[y:=w]\right)[x:=e]\right)(w$ is fresh $)$

Beta-Reduction, Again

- Whenever we do a step of beta reduction
- $(\lambda x . e 1) \mathrm{e} 2 \rightarrow \mathrm{e} 1[\mathrm{x}:=\mathrm{e} 2]$
- We must alpha-convert variables as necessary
- Sometimes performed implicitly (w/o showing conversion)
- Examples
- ($\lambda x . \lambda y . x$ y) $y=(\lambda x \cdot \lambda z . x z) y \rightarrow \lambda z . y z \quad / / y \rightarrow z$
- $(\lambda x . x(\lambda x . x)) z=(\lambda y . y(\lambda x . x)) z \rightarrow z(\lambda x . x) \quad / / x \rightarrow y$

Quiz \#6

Beta-reducing the following term produces what result?

($\lambda x . x \lambda y . y x) y$

> A. $y(\lambda z . z y)$
> B. $z(\lambda y . y z)$
> C. $y(\lambda y . y y)$
> D. $y \mathrm{y}$

Quiz \#6

Beta-reducing the following term produces what result?

($\lambda x . x \lambda y . y x) y$

> A. $y(\lambda z . z y)$
> B. $z(\lambda y . y z)$
> C. $y(\lambda y . y$ y $)$
> D. $y \mathrm{y}$

Quiz \#7

Beta reducing the following term produces what result?

$$
\lambda x .(\lambda y . y y) w z
$$

a) $\lambda x . w w z$
b) $\lambda x \cdot w z$
c) $w z$
d) Does not reduce

Quiz \#7

Beta reducing the following term produces what result?

$$
\lambda x .(\lambda y . y y) w z
$$

a) $\lambda x . w w z$
b) $\lambda x \cdot w z$
c) $w z$
d) Does not reduce

Lambda Calc, ImpI in OCaml

type id = string

- e ::= x

> | $\lambda x . e$
> $\mid \mathrm{e} \mathrm{e}$
type exp = Var of id
| Lam of id * exp
| App of exp * exp
$y \quad \operatorname{Var} " \mathrm{y}$ "
$\lambda x . x \quad$ Lam ("x", Var "x")
$\lambda x . \lambda y . x y \operatorname{Lam}(" x ",(\operatorname{Lam}(" y ", A p p(\operatorname{Var} " x ", \operatorname{Var} " y "))))$ App
 Lam ("x", App (Var "x", Var "x")))

Quiz \#8

What is this term's AST? type id = string

$$
\begin{aligned}
& \text { type } \exp = \\
& \text { Var of id } \\
& \text { I Lam of id } * \text { exp } \\
& \text { I App of exp * exp }
\end{aligned}
$$

A. App (Lam ("x", Var "x"), Var "x")
B. Lam (Var "x", Var "x", Var "x")
C. Lam ("x", App (Var "x" ,Var "x"))
D. App (Lam ("x", App ("x", "x")))

Quiz \#8

What is this term's AST? type id = string

$$
\begin{aligned}
& \text { type } \exp = \\
& \quad \text { Var of id } \\
& \text { | Lam of id * exp } \\
& \text { I App of exp * exp }
\end{aligned}
$$

A. App (Lam ("x", Var "x"), Var "x")
B. Lam (Var "x", Var "x", Var "x")
C. Lam ("x", App (Var "x" ,Var "x"))
D. App (Lam ("x", App ("x", "x")))

The Power of Lambdas

- To give a sense of how one can encode various constructs into LC we'll be looking at some concrete examples:
- Let bindings
- Booleans
- Pairs
- Natural numbers \& arithmetic
- Looping

Let bindings

- Local variable declarations are like defining a function and applying it immediately (once):
- let $x=e 1$ in e2 $=(\lambda x . e 2)$ e1
- Example
- let $x=(\lambda y . y)$ in $x x=(\lambda x . x x)(\lambda y . y)$
where
$(\lambda x . x \times)(\lambda y . y) \rightarrow(\lambda x . x x)(\lambda y . y) \rightarrow(\lambda y . y)(\lambda y . y) \rightarrow(\lambda y . y)$

Booleans

- Church's encoding of mathematical logic
- true $=\lambda x . \lambda y . x$
- false $=\lambda x . \lambda y . y$
- if a then b else c
> Defined to be the expression: abc
- Examples
- if true then b else $c=(\lambda * . \lambda y . x) b c \rightarrow(\lambda y . b) c \rightarrow b$
- if false then b else $c=(\lambda x . \lambda y . y) b c \rightarrow(\lambda y . y) c \rightarrow c$

Booleans (cont.)

- Other Boolean operations
- not $=\lambda x$. x false true
$>$ not $x=x$ false true $=$ if x then false else true
$>$ not true \rightarrow (λx.x false true) true \rightarrow (true false true) \rightarrow false
- and $=\lambda x . \lambda y . x$ y false
> and $x y=$ if x then y else false
- or $=\lambda x . \lambda y . x$ true y
> or $x y=$ if x then true else y
- Given these operations
- Can build up a logical inference system

Quiz \#9

What is the lambda calculus encoding of xor $x y$?

- xor true true = xor false false = false
- xor true false $=$ xor false true $=$ true
- \quad x x y
- x (y true false) y
- x (y false true) y
- $y \times y$

true $=\lambda x . \lambda y . x$
false $=\lambda x . \lambda y . y$
if a then b else c = a b c
not $=\lambda x$. false true

Quiz \#9

What is the lambda calculus encoding of xor $x y$?

- xor true true = xor false false = false
- xor true false $=$ xor false true $=$ true
- $x x y$
- x (y true false) y
- x (y false true) y
- $y x y$

```
true = \lambdax.\lambday.x
false = \lambdax.\lambday.y
if a then b else c = a b c
not = \lambdax.x false true
```


Pairs

- Encoding of a pair a, b
- $(a, b)=\lambda x$.if x then a else b
- fst = $\lambda \mathrm{f} . \mathrm{f}$ true
- snd = λ f.f false
- Examples
- fst $(a, b)=(\lambda f . f$ true $)(\lambda x$.if x then a else $b) \rightarrow$
(λx.if x then a else b) true \rightarrow
if true then a else $b \rightarrow a$
- snd $(a, b)=(\lambda f . f$ false $)(\lambda x$.if x then a else $b) \rightarrow$
(λx.if x then a else b) false \rightarrow
if false then a else $b \rightarrow b$

Natural Numbers (Church* Numerals)

- Encoding of non-negative integers
- $0=\lambda f . \lambda y . y$
- 1 = $\lambda f . \lambda y . f$ y
- 2 = $\lambda \mathrm{f} . \lambda y . f(\mathrm{f} \mathrm{y})$
- $3=\lambda f . \lambda y . f(f(f y))$
i.e., $\mathrm{n}=\lambda \mathrm{f} . \lambda \mathrm{y}$. <apply f n times to y >
- Formally: $n+1=\lambda f . \lambda y . f(n f y)$
*(Alonzo Church, of course)

Quiz \#10 $\mathrm{n}=\lambda \mathrm{f} . \lambda \mathrm{y}$.<apply $\mathrm{f} n$ times to $\mathrm{y}>$

What OCaml type could you give to a Churchencoded numeral?

- ('a -> 'b) -> 'a -> 'b
- ('a -> 'a) -> 'a -> 'a
- ('a -> 'a) -> 'b -> int
- (int -> int) -> int -> int

Quiz \#10 $\mathrm{n}=\lambda \mathrm{f} . \lambda \mathrm{y} .<a$ apply $\mathrm{f} n$ times to $\mathrm{y}>$

What OCaml type could you give to a Churchencoded numeral?

- ('a -> 'b) -> 'a -> 'b
- ('a -> 'a) -> 'a -> 'a
- ('a -> 'a) -> 'b -> int
- (int -> int) -> int -> int

Operations On Church Numerals

- Successor
- $\operatorname{succ}=\lambda z . \lambda f . \lambda y . f(z f y)$

> - $0=\lambda f . \lambda y . y$
> $\bullet 1=\lambda f . \lambda y . f y$

- Example
- succ $0=$
$(\lambda z . \lambda f . \lambda y . f(z f y))(\lambda f . \lambda y . y) \rightarrow$
$\lambda f . \lambda y . f((\lambda f . \lambda y . y) f y) \rightarrow$
$\lambda f . \lambda y . f((\lambda y . y) y) \rightarrow$
$\lambda f . \lambda y . f y$
= 1
Since ($\lambda x . y$) $z \rightarrow y$

Operations On Church Numerals (cont.)

- IsZero?
- iszero = $\lambda z . z$ (λ y.false) true

This is equivalent to $\lambda z .((z$ (λ y.false $))$ true)

- Example
- iszero $0=$
- $0=\lambda \mathrm{f} . \lambda \mathrm{y} . \mathrm{y}$
($\lambda z . z$ (λy.false) true) ($\lambda \mathrm{f} . \lambda y . \mathrm{y}$) \rightarrow
($\lambda \mathrm{f} . \lambda y . \mathrm{y}$) ($\lambda \mathrm{y} . \mathrm{false}$) true \rightarrow
($\lambda \mathrm{y} . \mathrm{y}$) true \rightarrow
true

Arithmetic Using Church Numerals

- If M and N are numbers (as λ expressions)
- Can also encode various arithmetic operations
- Addition
- $\mathrm{M}+\mathrm{N}=\lambda \mathrm{f} . \lambda \mathrm{y} . \mathrm{M} \mathrm{f}(\mathrm{Nf} \mathrm{y})$

Equivalently: + = $\lambda \mathrm{M} . \lambda \mathrm{N} . \lambda \mathrm{f} . \lambda y . \mathrm{M} \mathrm{f} \mathrm{(N} \mathrm{f} \mathrm{y)}$
$>$ In prefix notation (+ M N)

- Multiplication
- M * $N=\lambda f . M(N f)$

Equivalently: * = $\lambda \mathrm{M} . \lambda \mathrm{N} . \lambda \mathrm{f} . \lambda \mathrm{y} . \mathrm{M}(\mathrm{Nf})$ y
> In prefix notation (* M N)

Arithmetic (cont.)

- Prove 1+1 = 2
- $1+1=\lambda x \cdot \lambda y .(1 x)(1 x y)=$
- $1=\lambda f . \lambda y . f$ y
- $\lambda x . \lambda y .((\lambda f . \lambda y . f y) x)(1 \times y) \rightarrow$
- $\lambda x . \lambda y .(\lambda y . x y)(1 x y) \rightarrow$
- $\lambda x . \lambda y . x(1 \times y) \rightarrow$
- $\lambda x . \lambda y . x((\lambda f . \lambda y . f y) x y) \rightarrow$
- $\lambda x . \lambda y . x((\lambda y . x y) y) \rightarrow$
- $\lambda x . \lambda y . x(x y)=2$
- With these definitions
- Can build a theory of arithmetic

Arithmetic Using Church Numerals

- What about subtraction?
- Easy once you have 'predecessor', but...
- Predecessor is very difficult!
- Story time:
- One of Church's students, Kleene (of Kleene-star fame) was struggling to think of how to encode 'predecessor', until it came to him during a trip to the dentists office.
- Take from this what you will
- Wikipedia has a great derivation of 'predecessor', not enough time today.

Looping+Recursion

- So far we have avoided self-reference, so how does recursion work?
- We can construct a lambda term that 'replicates' itself:
- Define $\mathrm{D}=\lambda x . x \times$, then
- $D \mathrm{D}=(\lambda x . x \mathrm{x})(\lambda x . x \mathrm{x}) \rightarrow(\lambda x . x \mathrm{x})(\lambda x . x \mathrm{x})=\mathrm{D} D$
- D D is an infinite loop
- We want to generalize this, so that we can make use of looping

The Fixpoint Combinator

$Y=\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))$

- Then

$$
\begin{aligned}
& Y F= \\
& (\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))) F \rightarrow \\
& (\lambda x . F(x x))(\lambda x . F(x x)) \rightarrow \\
& F((\lambda x . F(x x))(\lambda x . F(x x))) \\
& =F(Y F)
\end{aligned}
$$

- $\mathrm{Y} F$ is a fixed point (aka fixpoint) of F
- Thus $Y F=F(Y F)=F(F(Y F))=\ldots$
- We can use Y to achieve recursion for F

Example

fact $=\lambda f . \lambda n$.if $n=0$ then 1 else n * $(f(n-1))$

- The second argument to fact is the integer
- The first argument is the function to call in the body
> We'll use Y to make this recursively call fact
(Y fact) $1=($ fact (Y fact)) 1
\rightarrow if $1=0$ then 1 else $1^{*}((Y$ fact $) 0)$
$\rightarrow 1^{*}((\mathrm{Y}$ fact) 0$)$
$=1$ * (fact (Y fact) 0)
$\rightarrow 1$ * (if $0=0$ then 1 else 0 * ((Y fact) (-1))
$\rightarrow 1$ * $1 \rightarrow 1$

Factorial 4=?

```
(Y G) 4
    G (Y G) 4
(\lambdar.\lambdan.(if n = 0 then 1 else n > (r (n-1)))) (Y G) 4
(\lambdan.(if n = 0 then 1 else n }\times(|(YG) (n-1)))) 
if 4 = 0 then 1 else 4 }\times((YG) (4-1)
4 < (G (Y G) (4-1))
4 > ((\lambdan.(1, if n = 0; else n }\times((YG) (n-1)))) (4-1)
4 }\times(1, if 3 = 0; else 3 x ((Y G) (3-1)))
4 人 (3 < (G (Y G) (3-1)))
4 < (3 × ((\lambdan.(1, if n = 0; else n × ((Y G) (n-1)))) (3-1)))
4 }\times(3\times(1, if 2 = 0; else 2 X ((Y G) (2-1))))
4 < (3 < (2 × (G (Y G) (2-1))))
4 < (3 < (2 x ((\lambdan.(1, if n = 0; else n x ((Y G) (n-1)))) (2-1))))
4 < (3 < (2 × (1, if 1 = 0; else 1 }\times(\mp@code{(YG) (1-1)))))
4 < (3 < (2 × (1 }\times(G)(YG) (1-1))))) 
4 < (3 < (2 < (1 < ((\lambdan.(1, if n = 0; else n < ((YG) (n-1)))) (1-1))))))
4 < (3 < (2 < (1 < (1, if 0 = 0; else 0 × ((Y G) (0-1))))))
4\times(3\times(2 < (1 }\times(1)))
24
```


Discussion

- Lambda calculus is Turing-complete
- Most powerful language possible
- Can represent pretty much anything in "real" language
> Using clever encodings
- But programs would be
- Pretty slow (10000 + $1 \rightarrow$ thousands of function calls)
- Pretty large (10000 + $1 \rightarrow$ hundreds of lines of code)
- Pretty hard to understand (recognize 10000 vs. 9999)
- In practice
- We use richer, more expressive languages
- That include built-in primitives

The Need For Types

- Consider the untyped lambda calculus
- false $=\lambda x . \lambda y . y$
- $0=\lambda x . \lambda y . y$
- Since everything is encoded as a function...
- We can easily misuse terms...
> false $0 \rightarrow \lambda y . y$
> if 0 then ...
...because everything evaluates to some function
- The same thing happens in assembly language
- Everything is a machine word (a bunch of bits)
- All operations take machine words to machine words

Simply-Typed Lambda Calculus (STLC)

- e : : $=\mathrm{n}|\mathrm{x}| \lambda x: t . \mathrm{e} \mid \mathrm{e} \mathrm{e}$
- Added integers n as primitives
> Need at least two distinct types (integer \& function)...
> ...to have type errors
- Functions now include the type t of their argument
- $t::=$ int $\mid t \rightarrow t$
- int is the type of integers
- $\mathrm{t} 1 \rightarrow \mathrm{t} 2$ is the type of a function
> That takes arguments of type t 1 and returns result of type t2

Types are limiting

- STLC will reject some terms as ill-typed, even if they will not produce a run-time error
- Cannot type check Y in STLC
> Or in OCaml, for that matter, at least not as written earlier.
- Surprising theorem: All (well typed) simply-typed lambda calculus terms are strongly normalizing
- A normal form is one that cannot be reduced further
> A value is a kind of normal form
- Strong normalization means STLC terms always terminate
> Proof is not by straightforward induction: Applications "increase" term size

Summary

- Lambda calculus is a core model of computation
- We can encode familiar language constructs using only functions
> These encodings are enlightening - make you a better (functional) programmer
- Useful for understanding how languages work
- Ideas of types, evaluation order, termination, proof systems, etc. can be developed in lambda calculus,
> then scaled to full languages

