CMSC 330: Organization of Programming Languages

Lambda Calculus

Turing Machine

Turing Completeness

- Turing machines are the most powerful description of computation possible
 - They define the Turing-computable functions
- A programming language is Turing complete if
 - It can map every Turing machine to a program
 - A program can be written to emulate a Turing machine
 - It is a superset of a known Turing-complete language
- Most powerful programming language possible
 - Since Turing machine is most powerful automaton

Programming Language Expressiveness

- So what language features are needed to express all computable functions?
 - What's a minimal language that is Turing Complete?
- Observe: some features exist just for convenience
 - Multi-argument functions foo (a, b, c)
 - > Use currying or tuples
 - Loops

while (a < b) ...

- > Use recursion
- Side effects

a := 1

> Use functional programming pass "heap" as an argument to each function, return it when with function's result: effectful : `a → `s → (`s * `a)

Programming Language Expressiveness

- It is not difficult to achieve Turing Completeness
 - Lots of things are 'accidentally' TC
- Some fun examples:
 - x86_64 `mov` instruction
 - Minecraft
 - Magic: The Gathering
 - Java Generics
- There's a whole cottage industry of proving things to be TC
- But: What is a "core" language that is TC?

Lambda Calculus (λ-calculus)

- Proposed in 1930s by
 - Alonzo Church
 - (born in Washingon DC!)
- Formal system

- Designed to investigate functions & recursion
- For exploration of foundations of mathematics
- Now used as
 - Tool for investigating computability
 - Basis of functional programming languages
 - Lisp, Scheme, ML, OCaml, Haskell...

Why Study Lambda Calculus?

- It is a "core" language
 - Very small but still Turing complete
- But with it can explore general ideas
 - Language features, semantics, proof systems, algorithms, ...
- Plus, higher-order, anonymous functions (aka lambdas) are now very popular!
 - C++ (C++11), PHP (PHP 5.3.0), C# (C# v2.0), Delphi (since 2009), Objective C, Java 8, Swift, Python, Ruby (Procs), ... (and functional languages like OCaml, Haskell, F#, ...)
 - Excel, as of 2021!

Lambda Calculus Syntax

- A lambda calculus expression is defined as
 - e ::= x variable | λx.e abstraction (fun def) | e e application (fun call)
 - > This grammar describes ASTs; not for parsing ambiguous!
 - Lambda expressions also known as lambda terms
 - λx.e is like (fun x -> e) in OCaml
 That's it! Nothing but higher-order functions

Three Conventions

- Scope of λ extends as far right as possible
 - Subject to scope delimited by parentheses
 - λx . $\lambda y.x y$ is same as $\lambda x.(\lambda y.(x y))$
- Function application is left-associative
 - x y z is (x y) z
 - Same rule as OCaml
- As a convenience, we use the following "syntactic sugar" for local declarations
 - let x = e1 in e2 is short for ($\lambda x.e2$) e1

$\lambda x. (y z)$ and $\lambda x. y z$ are equivalent

A. True B. False

$\lambda x. (y z)$ and $\lambda x. y z$ are equivalent

A. True B. False

This term is equivalent to which of the following?

λx.x a b

A. $(\lambda x. x)$ (a b) B. $((\lambda x. x) a)$ b) C. $\lambda x. (x (a b))$ D. $(\lambda x. ((x a) b))$

This term is equivalent to which of the following?

λx.x a b

A. $(\lambda x. x)$ (a b) B. $((\lambda x. x) a)$ b) C. $\lambda x. (x (a b))$ D. $(\lambda x. ((x a) b))$

Lambda Calculus Semantics

- Evaluation: All that's involved are function calls (λx.e1) e2
 - Evaluate e1 with x replaced by e2
- This application is called beta-reduction
 - $(\lambda x.e1) e2 \rightarrow e1[x:=e2]$
 - e1[x:=e2] is e1 with occurrences of x replaced by e2
 - > This operation is called *substitution*
 - Replace formals with actuals
 - Instead of using environment to map formals to actuals
 - We allow reductions to occur anywhere in a term
 - > Order reductions are applied does not affect final value!
- When a term cannot be reduced further it is in beta normal form

Beta Reduction Example

► $(\lambda x.\lambda z.x z) y$ $\rightarrow (\lambda x.(\lambda z.(x z))) y$ $\rightarrow (\lambda x.(\lambda z.(x z))) y$

// since λ extends to right

// apply $(\lambda \mathbf{x}.e1) e2 \rightarrow e1[\mathbf{x}:=e2]$ // where $e1 = \lambda z.(\mathbf{x} z), e2 = y$

 $\rightarrow \lambda z.(y z)$

// final result

- Formal
- Actual

Equivalent OCaml code

• $(fun x \rightarrow (fun z \rightarrow (x z))) y \rightarrow fun z \rightarrow (y z)$

Two Varieties

- There are two common variants of big-step semantics
 - Eager evaluation (aka strict, or call by value)
 - Lazy evaluation (aka call by name)

Call by Value

- Before doing a beta reduction, we make sure the argument cannot, itself, be further evaluated
- This is known as call-by-value (CBV)
 - This is the Eager big step approach

$$e1 \rightarrow e3$$
 $e2 \rightarrow e3$ $e1 e2 \rightarrow e3 e2$ $e1 e2 \rightarrow e1 e3$

 $e = (\lambda x.e2) \text{ or } e = y$ $(\lambda x.e1) e \rightarrow e1[x:=e]$

Beta Reductions (CBV)

- ► $(\lambda X.X) Z \rightarrow Z$
- $(\lambda x.y) z \rightarrow y$
- $(\lambda x.x y) z \rightarrow z y$
 - A function that applies its argument to y

Beta Reductions (CBV)

- $(\lambda x.x y) (\lambda z.z) \rightarrow (\lambda z.z) y \rightarrow y$
- ► $(\lambda x.\lambda y.x y) z \rightarrow \lambda y.z y$
 - A curried function of two arguments
 - Applies its first argument to its second
- ► $(\lambda x.\lambda y.x y) (\lambda z.zz) x \rightarrow (\lambda y.(\lambda z.zz)y)x \rightarrow (\lambda z.zz)x \rightarrow x x$

$(\lambda x. y)$ z can be beta-reduced to

A. y
B. y z
C. z
D. cannot be reduced

$(\lambda x. y)$ z can be beta-reduced to

A. y
B. y z
C. z
D. cannot be reduced

Which of the following reduces to λz . z?

- a) (λy. λz. x) z
- b) (λz. λx. z) y
- c) (λy. y) (λx. λz. z) w
- d) $(\lambda y. \lambda x. z) z (\lambda z. z)$

Which of the following reduces to λz . z?

- a) (λy. λz. x) z
- b) (λz. λx. z) y
- c) (λy. y) (λx. λz. z) w
- d) $(\lambda y. \lambda x. z) z (\lambda z. z)$

Call by Name

- Instead of the CBV strategy, we can specifically choose to perform beta-reduction *before* we evaluate the argument
- This is known as call-by-name (CBN)
 - This is the Lazy small-step approach

$$e1 \rightarrow e3$$

 $e1 e2 \rightarrow e3 e2$
 $(\lambda x.e1) e2 \rightarrow e1[x:=e2]$

CBN Reduction

- ► CBV
 - $(\lambda z.z) ((\lambda y.y) x) \rightarrow (\lambda z.z) x \rightarrow x$
- CBN
 - $(\lambda z.z) ((\lambda y.y) x) \rightarrow (\lambda y.y) x \rightarrow x$

Beta Reductions (CBN)

 $(\lambda x.x (\lambda y.y)) (u r) \rightarrow$

 $(\lambda x.(\lambda w. x w)) (y z) \rightarrow$

Beta Reductions (CBN)

 $(\lambda x.x (\lambda y.y)) (u r) \rightarrow (u r) (\lambda y.y)$

$(\lambda x.(\lambda w. x w)) (y z) \rightarrow (\lambda w. (y z) w)$

Static Scoping & Alpha Conversion

- Lambda calculus uses static scoping
- Consider the following
 - $(\lambda x.x (\lambda x.x)) z \rightarrow ?$
 - The rightmost "x" refers to the second binding
 - This is a function that
 - > Takes its argument and applies it to the identity function
- This function is "the same" as (λx.x (λy.y))
 - Renaming bound variables consistently preserves meaning
 This is called alpha-renaming or alpha conversion
 - Ex. $\lambda x.x = \lambda y.y = \lambda z.z$ $\lambda y.\lambda x.y = \lambda z.\lambda x.z$

Which of the following expressions is alpha equivalent to (alpha-converts from)

(λx. λy. x y) y

a) λy. y y
b) λz. y z
c) (λx. λz. x z) y
d) (λx. λy. x y) z

Which of the following expressions is alpha equivalent to (alpha-converts from)

(λx. λy. x y) y

a) λy. y y
b) λz. y z
c) (λx. λz. x z) y
d) (λx. λy. x y) z

Defining Substitution

- Use recursion on structure of terms
 - x[x:=e] = e // Replace x by e
 - y[x:=e] = y // y is different than x, so no effect
 - (e1 e2)[x:=e] = (e1[x:=e]) (e2[x:=e])
 // Substitute both parts of application
 - (λx.e')[x:=e] = λx.e'
 - (λy.e')[x:=e] = ?
 - $(\lambda y.(e'[x:=e]))$ If $x \notin (fvs e)$
 - (λy. x y) z = (λy. z y)
 - (λy.(e'[x:=e])) alpha-convert e' if x ∈ (fvs e)
 - (λy. x y) y = (λz. x z) y= λz. y z

Variable Capture

How about the following?

- $(\lambda x.\lambda y.x y) y \rightarrow ?$
- When we replace y inside, we don't want it to be captured by the inner binding of y, as this violates static scoping
- I.e., $(\lambda x.\lambda y.x y) y \neq \lambda y.y y$
- Solution
 - (λx.λy.x y) is "the same" as (λx.λz.x z)
 - > Due to alpha conversion
 - So alpha-convert ($\lambda x.\lambda y.x y$) y to ($\lambda x.\lambda z.x z$) y first
 - > Now $(\lambda x.\lambda z.x z) y \rightarrow \lambda z.y z$

Completing the Definition of Substitution

- Recall: we need to define (λy.e')[x:=e]
 - We want to avoid capturing (free) occurrences of y in e
 - Solution: alpha-conversion!
 - Change y to a variable w that does not appear in e' or e (Such a w is called fresh)
 - Replace all occurrences of y in e' by w.
 - > Then replace all occurrences of x in e' by e!
- Formally:

 $(\lambda y.e')[x:=e] = \lambda w.((e' [y:=w]) [x:=e]) (w \text{ is fresh})$

Beta-Reduction, Again

Whenever we do a step of beta reduction

- $(\lambda x.e1) e2 \rightarrow e1[x:=e2]$
- We must alpha-convert variables as necessary
- Sometimes performed implicitly (w/o showing conversion)
- Examples
 - $(\lambda x.\lambda y.x y) y = (\lambda x.\lambda z.x z) y \rightarrow \lambda z.y z$ // $y \rightarrow z$
 - $(\lambda x.x (\lambda x.x)) z = (\lambda y.y (\lambda x.x)) z \rightarrow z (\lambda x.x) // x \rightarrow y$

Beta-reducing the following term produces what result?

(λx.x λy.y x) y

A. y (λz.z y)
B. z (λy.y z)
C. y (λy.y y)
D. y y

Beta-reducing the following term produces what result?

(λx.x λy.y x) y

A. y (λz.z y)
B. z (λy.y z)
C. y (λy.y y)
D. y y

Beta reducing the following term produces what result?

 $\lambda x.(\lambda y. y y) w z$

a) λx. w w z
b) λx. w z
c) w z
d) Does not reduce

Beta reducing the following term produces what result?

 $\lambda x.(\lambda y. y y) w z$

a) λx. w w z
b) λx. w z
c) w z
d) Does not reduce

Lambda Calc, Impl in OCaml

	type id = string
▶ e ::= x	type exp = Var of id
λx.e e e	Lam of id * exp
	App of exp * exp

What is this term's AST? type id = string type exp = Var of id | Lam of id * exp | λχ.χ χ | App of exp * exp

A. App (Lam (``x", Var ``x"), Var ``x")
B. Lam (Var ``x", Var ``x", Var ``x")
C. Lam (``x", App (Var ``x", Var ``x"))
D. App (Lam (``x", App (``x", ``x")))

What is this term's AST? What is this term's AST? type id = string type exp = Var of id | Lam of id * exp | App of exp * exp

A. App (Lam (``x", Var ``x"), Var ``x")
B. Lam (Var ``x", Var ``x", Var ``x")
C. Lam (``x", App (Var ``x", Var ``x"))
D. App (Lam (``x", App (``x", ``x")))

The Power of Lambdas

- To give a sense of how one can encode various constructs into LC we'll be looking at some concrete examples:
 - Let bindings
 - Booleans
 - Pairs
 - Natural numbers & arithmetic
 - Looping

Let bindings

- Local variable declarations are like defining a function and applying it immediately (once):
 - let x = e1 in e2 = (λx.e2) e1
- Example
 - let $x = (\lambda y.y)$ in $x x = (\lambda x.x x) (\lambda y.y)$

where

 $(\lambda x.x x) (\lambda y.y) \rightarrow (\lambda x.x x) (\lambda y.y) \rightarrow (\lambda y.y) (\lambda y.y) \rightarrow (\lambda y.y)$

Booleans

- Church's encoding of mathematical logic
 - true = $\lambda x.\lambda y.x$
 - false = $\lambda x.\lambda y.y$
 - if a then b else c
 - Defined to be the expression: a b c
- Examples
 - if true then b else c = $(\lambda x . \lambda y . x) b c \rightarrow (\lambda y . b) c \rightarrow b$
 - if false then b else c = $(\lambda x.\lambda y.y)$ b c $\rightarrow (\lambda y.y)$ c \rightarrow c

Booleans (cont.)

- Other Boolean operations
 - not = $\lambda x.x$ false true
 - > not x = x false true = if x then false else true
 - > not true \rightarrow ($\lambda x.x$ false true) true \rightarrow (true false true) \rightarrow false
 - and = $\lambda x \cdot \lambda y \cdot x$ y false
 - > and x y = if x then y else false
 - or = $\lambda x.\lambda y.x$ true y

> or x y = if x then true else y

- Given these operations
 - Can build up a logical inference system

What is the lambda calculus encoding of xor x y?

- xor true true = xor false false = false
- xor true false = xor false true = true
- ► x x y
- x (y true false) y
- x (y false true) y
- ► y x y

true = $\lambda x.\lambda y.x$ false = $\lambda x.\lambda y.y$ if a then b else c = a b c not = $\lambda x.x$ false true

What is the lambda calculus encoding of xor x y?

- xor true true = xor false false = false
- xor true false = xor false true = true
- ► x x y
- x (y true false) y
- x (y false true) y
- ► y x y

true = $\lambda x.\lambda y.x$ false = $\lambda x.\lambda y.y$ if a then b else c = a b c not = $\lambda x.x$ false true

Pairs

Encoding of a pair a, b

- (a,b) = λx.if x then a else b
- fst = λ f.f true
- snd = λ f.f false
- Examples
 - fst (a,b) = (λf.f true) (λx.if x then a else b) → (λx.if x then a else b) true → if true then a else b → a
 - snd (a,b) = (λf.f false) (λx.if x then a else b) → (λx.if x then a else b) false → if false then a else b → b

Natural Numbers (Church* Numerals)

- Encoding of non-negative integers
 - $0 = \lambda f. \lambda y. y$
 - $1 = \lambda f \cdot \lambda y \cdot f y$
 - $2 = \lambda f \cdot \lambda y \cdot f (f y)$
 - $3 = \lambda f \cdot \lambda y \cdot f (f (f y))$

i.e., $n = \lambda f \cdot \lambda y \cdot \langle apply f n times to y \rangle$

• Formally: $n+1 = \lambda f \cdot \lambda y \cdot f (n f y)$

*(Alonzo Church, of course)

What OCaml type could you give to a Churchencoded numeral?

▶ ('a -> 'b) -> 'a -> 'b

Quiz #10

- ▶ ('a -> 'a) -> 'a -> 'a
- ('a -> 'a) -> 'b -> int
- (int -> int) -> int -> int

What OCaml type could you give to a Churchencoded numeral?

▶ ('a -> 'b) -> 'a -> 'b

Quiz #10

- ('a -> 'a) -> 'a -> 'a
- ► ('a -> 'a) -> 'b -> int
- (int -> int) -> int -> int

Operations On Church Numerals

- Successor
 - succ = $\lambda z \cdot \lambda f \cdot \lambda y \cdot f (z f y)$

0 = λf.λy.y
1 = λf.λy.f y

- Example
 - succ 0 =

 $(\lambda z.\lambda f.\lambda y.f (z f y)) (\lambda f.\lambda y.y) \rightarrow$ $\lambda f.\lambda y.f ((\lambda f.\lambda y.y) f y) \rightarrow$ $\lambda f.\lambda y.f ((\lambda y.y) y) \rightarrow$ $\lambda f.\lambda y.f y$

Since $(\lambda x.y) z \rightarrow y$

= 1

Operations On Church Numerals (cont.)

IsZero?

- iszero = λz.z (λy.false) true
 This is equivalent to λz.((z (λy.false)) true)
- Example
 - iszero 0 =

```
• 0 = \lambda f.\lambda y.y
```

```
\begin{array}{ll} (\lambda z.z \ (\lambda y.false) \ true) \ (\lambda f.\lambda y.y) \rightarrow \\ (\lambda f.\lambda y.y) \ (\lambda y.false) \ true \rightarrow \\ (\lambda y.y) \ true \rightarrow \\ & \text{Since} \ (\lambda x.y) \ z \rightarrow y \\ true \end{array}
```

Arithmetic Using Church Numerals

- If M and N are numbers (as λ expressions)
 - Can also encode various arithmetic operations
- Addition
 - M + N = λf.λy.M f (N f y)
 Equivalently: + = λM.λN.λf.λy.M f (N f y)
 > In prefix notation (+ M N)
- Multiplication
 - M * N = $\lambda f.M$ (N f)

Equivalently: * = $\lambda M.\lambda N.\lambda f.\lambda y.M$ (N f) y

In prefix notation (* M N)

Arithmetic (cont.)

- Prove 1+1 = 2
 - $1+1 = \lambda x \cdot \lambda y \cdot (1 x) (1 x y) =$
 - $\lambda x.\lambda y.((\lambda f.\lambda y.f y) x) (1 x y) \rightarrow$
 - $\lambda x.\lambda y.(\lambda y.x y) (1 \times y) \rightarrow$
 - $\lambda x.\lambda y.x (1 \times y) \rightarrow$
 - $\lambda x.\lambda y.x ((\lambda f.\lambda y.f y) \times y) \rightarrow$
 - $\lambda x.\lambda y.x ((\lambda y.x y) y) \rightarrow$
 - λx.λy.x (x y) = 2
- With these definitions
 - Can build a theory of arithmetic

• $1 = \lambda f \cdot \lambda y \cdot f y$

• $2 = \lambda f \cdot \lambda y \cdot f (f y)$

Arithmetic Using Church Numerals

- What about subtraction?
 - Easy once you have 'predecessor', but...
 - Predecessor is very difficult!
- Story time:
 - One of Church's students, Kleene (of Kleene-star fame) was struggling to think of how to encode 'predecessor', until it came to him during a trip to the dentists office.
 - Take from this what you will
- Wikipedia has a great derivation of 'predecessor', not enough time today.

Looping+Recursion

- So far we have avoided self-reference, so how does recursion work?
- We can construct a lambda term that 'replicates' itself:
 - Define $D = \lambda x.x x$, then
 - $D D = (\lambda x.x x) (\lambda x.x x) \rightarrow (\lambda x.x x) (\lambda x.x x) = D D$
 - D D is an infinite loop
- We want to generalize this, so that we can make use of looping

The Fixpoint Combinator

- $\mathbf{Y} = \lambda f(\lambda x.f(x x)) (\lambda x.f(x x))$
- Then
 - **Y** F =
 - $(\lambda f.(\lambda x.f(x x))(\lambda x.f(x x))) F \rightarrow$ $(\lambda x.F(x x))(\lambda x.F(x x)) \rightarrow$ $F((\lambda x.F(x x))(\lambda x.F(x x)))$
 - = F (**Y** F)

- Y F is a *fixed point* (aka fixpoint) of F
- ► Thus **Y** F = F (**Y** F) = F (F (**Y** F)) = ...
 - We can use Y to achieve recursion for F

Example

fact = $\lambda f.\lambda n.if n = 0$ then 1 else n * (f (n-1))

- The second argument to fact is the integer
- The first argument is the function to call in the body
 - > We'll use Y to make this recursively call fact
- (Y fact) 1 = (fact (Y fact)) 1
 - \rightarrow if 1 = 0 then 1 else 1 * ((Y fact) 0)
 - \rightarrow 1 * ((Y fact) 0)
 - = 1 * (fact (Y fact) 0)
 - \rightarrow 1 * (if 0 = 0 then 1 else 0 * ((Y fact) (-1)) \rightarrow 1 * 1 \rightarrow 1

Factorial 4=?

```
(YG) 4
G (Y G) 4
(\lambda r.\lambda n.(if n = 0 then 1 else n \times (r (n-1)))) (Y G) 4
(\lambda n.(if n = 0 then 1 else n \times ((Y G) (n-1)))) 4
if 4 = 0 then 1 else 4 \times ((Y G) (4-1))
4 \times (G (Y G) (4-1))
4 × ((\lambdan.(1, if n = 0; else n × ((Y G) (n-1)))) (4-1))
4 \times (1, \text{ if } 3 = 0; \text{ else } 3 \times ((Y G) (3-1)))
4 \times (3 \times (G (Y G) (3-1)))
4 \times (3 \times ((\lambda n.(1, if n = 0; else n \times ((Y G) (n-1)))) (3-1)))
4 \times (3 \times (1, \text{ if } 2 = 0; \text{ else } 2 \times ((Y G) (2-1))))
4 \times (3 \times (2 \times (G (Y G) (2-1))))
4 \times (3 \times (2 \times ((\lambda n.(1, if n = 0; else n \times ((Y G) (n-1)))) (2-1))))
4 \times (3 \times (2 \times (1, \text{ if } 1 = 0; \text{ else } 1 \times ((Y G) (1-1)))))
4 \times (3 \times (2 \times (1 \times (G (Y G) (1-1)))))
4 \times (3 \times (2 \times (1 \times ((\lambda n.(1, if n = 0; else n \times ((Y G) (n-1)))) (1-1)))))
4 \times (3 \times (2 \times (1 \times (1, if 0 = 0; else 0 \times ((Y G) (0-1))))))
4 \times (3 \times (2 \times (1 \times (1))))
24
```

Discussion

- Lambda calculus is Turing-complete
 - Most powerful language possible
 - Can represent pretty much anything in "real" language
 - > Using clever encodings
- But programs would be
 - Pretty slow (10000 + 1 \rightarrow thousands of function calls)
 - Pretty large (10000 + 1 \rightarrow hundreds of lines of code)
 - Pretty hard to understand (recognize 10000 vs. 9999)
- In practice
 - We use richer, more expressive languages
 - That include built-in primitives

The Need For Types

- Consider the untyped lambda calculus
 - false = $\lambda x.\lambda y.y$
 - $0 = \lambda x . \lambda y . y$
- Since everything is encoded as a function...
 - We can easily misuse terms...
 - \succ false 0 $\rightarrow \lambda y.y$
 - > if 0 then ...
 - ... because everything evaluates to some function
- The same thing happens in assembly language
 - Everything is a machine word (a bunch of bits)
 - All operations take machine words to machine words

Simply-Typed Lambda Calculus (STLC)

▶ e ::= n | x | λx:t.e | e e

- Added integers **n** as primitives
 - > Need at least two distinct types (integer & function)...
 - …to have type errors
- Functions now include the type **t** of their argument

► t ::= int | t \rightarrow t

- int is the type of integers
- $t1 \rightarrow t2$ is the type of a function
 - > That takes arguments of type t1 and returns result of type t2

Types are limiting

- STLC will reject some terms as ill-typed, even if they will not produce a run-time error
 - Cannot type check Y in STLC
 - > Or in OCaml, for that matter, at least not as written earlier.
- Surprising theorem: All (well typed) simply-typed lambda calculus terms are strongly normalizing
 - A normal form is one that cannot be reduced further
 > A value is a kind of normal form
 - Strong normalization means STLC terms always terminate
 - Proof is *not* by straightforward induction: Applications "increase" term size

Summary

- Lambda calculus is a core model of computation
 - We can encode familiar language constructs using only functions
 - These encodings are enlightening make you a better (functional) programmer
- Useful for understanding how languages work
 - Ideas of types, evaluation order, termination, proof systems, etc. can be developed in lambda calculus,
 - > then scaled to full languages