CMSC 330: Organization of Programming Languages

Lambda Calculus

Turing Machine

Turing Completeness

- Turing machines are the most powerful description of computation possible
- They define the Turing-computable functions
- A programming language is Turing complete if
- It can map every Turing machine to a program
- A program can be written to emulate a Turing machine
- It is a superset of a known Turing-complete language
- Most powerful programming language possible
- Since Turing machine is most powerful automaton

Programming Language Expressiveness

- So what language features are needed to express all computable functions?
- What's a minimal language that is Turing Complete?
- Observe: some features exist just for convenience
- Multi-argument functions foo (a, b, c)
> Use currying or tuples
- Loops
> Use recursion
- Side effects
$a:=1$
> Use functional programming pass "heap" as an argument to each function, return it when with function's result:

$$
\text { effectful : ‘a } \rightarrow \text { 's } \rightarrow \text { ('s * `a) }
$$

Programming Language Expressiveness

- It is not difficult to achieve Turing Completeness
- Lots of things are 'accidentally' TC
- Some fun examples:
- x86_64 `mov` instruction
- Minecraft
- Magic: The Gathering
- Java Generics
- There's a whole cottage industry of proving things to be TC
- But: What is a "core" language that is TC?

Lambda Calculus (λ-calculus)

- Proposed in 1930s by
- Alonzo Church
(born in Washingon DC!)
- Formal system

- Designed to investigate functions \& recursion
- For exploration of foundations of mathematics
- Now used as
- Tool for investigating computability
- Basis of functional programming languages
> Lisp, Scheme, ML, OCaml, Haskell...

Why Study Lambda Calculus?

- It is a "core" language
- Very small but still Turing complete
- But with it can explore general ideas
- Language features, semantics, proof systems, algorithms, ...
- Plus, higher-order, anonymous functions (aka lambdas) are now very popular!
- C++ (C++11), PHP (PHP 5.3.0), C\# (C\# v2.0), Delphi (since 2009), Objective C, Java 8, Swift, Python, Ruby (Procs), ... (and functional languages like OCaml, Haskell, F\#, ...)
- Excel, as of 2021!

Lambda Calculus Syntax

- A lambda calculus expression is defined as
e ::= x
| $\lambda x . e$
| ee
variable abstraction (fun def) application (fun call)
> This grammar describes ASTs; not for parsing - ambiguous!
> Lambda expressions also known as lambda terms
- $\lambda x . e$ is like (fun x-> e) in OCaml

That's it! Nothing but higher-order functions

Three Conventions

- Scope of λ extends as far right as possible
- Subject to scope delimited by parentheses
- $\lambda x . \lambda y . x$ y is same as λx.($\lambda y .(x y))$
- Function application is left-associative
- $x y z$ is ($x y$) z
- Same rule as OCaml
- As a convenience, we use the following "syntactic sugar" for local declarations
- let $x=e 1$ in e2 is short for ($\lambda x . e 2$) e1

Quiz \#1

$\lambda x .(y z)$ and $\lambda x . y z$ are equivalent
A. True
B. False

Quiz \#1

$\lambda x .(y z)$ and $\lambda x . y z$ are equivalent

A. True
B. False

Quiz \#2

This term is equivalent to which of the following?

$\lambda x . x$ a b

A. $(\lambda x \cdot x)(a b)$
B. $\left(\left(\begin{array}{l}(\lambda x \cdot x) \\ \text { C. } \\ \text { C }\end{array}\right)\right.$ b) $(x \quad(a b))$
D. $\left(\lambda x \cdot\left(\begin{array}{ll}x & a)\end{array}\right)\right)$

Quiz \#2

This term is equivalent to which of the following?

$\lambda x . x$ a b

A. $(\lambda x \cdot x)(a b)$
B. $\left(\left(\begin{array}{l}(\lambda x \cdot x) \\ \text { C. } \\ \text { a }\end{array}\right) \quad(x)(a b)\right)$
D. $\left(\lambda x \cdot\left(\begin{array}{ll}x & a)\end{array}\right)\right)$

Lambda Calculus Semantics

- Evaluation: All that's involved are function calls ($\lambda x . e 1$) e2
- Evaluate e1 with x replaced by e2
- This application is called beta-reduction
- ($\lambda x . e 1$) $\mathrm{e} 2 \rightarrow \mathrm{e} 1[\mathrm{x}:=\mathrm{e} 2]$
$>e 1[x:=e 2]$ is $e 1$ with occurrences of x replaced by e2
> This operation is called substitution
- Replace formals with actuals
- Instead of using environment to map formals to actuals
- We allow reductions to occur anywhere in a term
> Order reductions are applied does not affect final value!
- When a term cannot be reduced further it is in beta normal form

Beta Reduction Example

- $(\lambda x . \lambda z . x z) y$
$\rightarrow(\lambda x .(\lambda z .(x z))) y$

// apply (λ x.e1) e2 $\rightarrow \mathrm{e} 1[\mathrm{x}:=\mathrm{e} 2]$
// where e1 = $\lambda z .(x z), e 2=y$
$\rightarrow \lambda z .(y \mathrm{z})$
- Equivalent OCaml code
- (fun x -> (fun z -> (x z))) y \rightarrow fun z -> (y z)

Beta Reductions (CBV)

- $(\lambda x . x) Z \rightarrow Z$
- $(\lambda x . y) z \rightarrow y$
- $(\lambda x . x y) z \rightarrow z y$
- A function that applies its argument to y

Beta Reductions (CBV)

- ($\lambda x . x y)(\lambda z . z) \rightarrow(\lambda z . z) y \rightarrow y$
- ($\lambda x . \lambda y . x y) z \rightarrow \quad \lambda y . z y$
- A curried function of two arguments
- Applies its first argument to its second
$\rightarrow(\lambda x . \lambda y . x y)(\lambda z . z z) x \rightarrow(\lambda y .(\lambda z . z z) y) x \rightarrow(\lambda z . z z) x \rightarrow x x$

