CMSC 330: Organization of Programming Languages

Lambda Calculus

Turing Machine

Turing Completeness

- Turing machines are the most powerful description of computation possible
 - They define the Turing-computable functions
- A programming language is Turing complete if
 - It can map every Turing machine to a program
 - A program can be written to emulate a Turing machine
 - It is a superset of a known Turing-complete language
- Most powerful programming language possible
 - Since Turing machine is most powerful automaton

Programming Language Expressiveness

- So what language features are needed to express all computable functions?
 - What's a minimal language that is Turing Complete?
- Observe: some features exist just for convenience
 - Multi-argument functions foo (a, b, c)
 - > Use currying or tuples
 - Loops

while (a < b) ...

- > Use recursion
- Side effects

a := 1

> Use functional programming pass "heap" as an argument to each function, return it when with function's result: effectful : `a → `s → (`s * `a)

Programming Language Expressiveness

- It is not difficult to achieve Turing Completeness
 - Lots of things are 'accidentally' TC
- Some fun examples:
 - x86_64 `mov` instruction
 - Minecraft
 - Magic: The Gathering
 - Java Generics
- There's a whole cottage industry of proving things to be TC
- But: What is a "core" language that is TC?

Lambda Calculus (λ-calculus)

- Proposed in 1930s by
 - Alonzo Church
 - (born in Washingon DC!)
- Formal system

- Designed to investigate functions & recursion
- For exploration of foundations of mathematics
- Now used as
 - Tool for investigating computability
 - Basis of functional programming languages
 - Lisp, Scheme, ML, OCaml, Haskell...

Why Study Lambda Calculus?

- It is a "core" language
 - Very small but still Turing complete
- But with it can explore general ideas
 - Language features, semantics, proof systems, algorithms, ...
- Plus, higher-order, anonymous functions (aka lambdas) are now very popular!
 - C++ (C++11), PHP (PHP 5.3.0), C# (C# v2.0), Delphi (since 2009), Objective C, Java 8, Swift, Python, Ruby (Procs), ... (and functional languages like OCaml, Haskell, F#, ...)
 - Excel, as of 2021!

Lambda Calculus Syntax

- A lambda calculus expression is defined as
 - e ::= x variable | λx.e abstraction (fun def) | e e application (fun call)
 - > This grammar describes ASTs; not for parsing ambiguous!
 - Lambda expressions also known as lambda terms
 - λx.e is like (fun x -> e) in OCaml
 That's it! Nothing but higher-order functions

Three Conventions

- Scope of λ extends as far right as possible
 - Subject to scope delimited by parentheses
 - λx . $\lambda y.x y$ is same as $\lambda x.(\lambda y.(x y))$
- Function application is left-associative
 - x y z is (x y) z
 - Same rule as OCaml
- As a convenience, we use the following "syntactic sugar" for local declarations
 - let x = e1 in e2 is short for ($\lambda x.e2$) e1

Quiz #1

$\lambda x. (y z)$ and $\lambda x. y z$ are equivalent

A. True B. False Quiz #1

$\lambda x. (y z)$ and $\lambda x. y z$ are equivalent

A. True B. False

This term is equivalent to which of the following?

λx.x a b

A. $(\lambda x. x)$ (a b) B. $((\lambda x. x) a)$ b) C. $\lambda x. (x (a b))$ D. $(\lambda x. ((x a) b))$

This term is equivalent to which of the following?

λx.x a b

A. $(\lambda x. x)$ (a b) B. $((\lambda x. x) a)$ b) C. $\lambda x. (x (a b))$ D. $(\lambda x. ((x a) b))$

Lambda Calculus Semantics

- Evaluation: All that's involved are function calls (λx.e1) e2
 - Evaluate e1 with x replaced by e2
- This application is called beta-reduction
 - $(\lambda x.e1) e2 \rightarrow e1[x:=e2]$
 - e1[x:=e2] is e1 with occurrences of x replaced by e2
 - > This operation is called *substitution*
 - Replace formals with actuals
 - Instead of using environment to map formals to actuals
 - We allow reductions to occur anywhere in a term
 - > Order reductions are applied does not affect final value!
- When a term cannot be reduced further it is in beta normal form

Beta Reduction Example

► $(\lambda x.\lambda z.x z) y$ $\rightarrow (\lambda x.(\lambda z.(x z))) y$ $\rightarrow (\lambda x.(\lambda z.(x z))) y$

// since λ extends to right

// apply $(\lambda \mathbf{x}.e1) e2 \rightarrow e1[\mathbf{x}:=e2]$ // where $e1 = \lambda z.(\mathbf{x} z), e2 = y$

 $\rightarrow \lambda z.(y z)$

// final result

- Formal
- Actual

Equivalent OCaml code

• $(fun x \rightarrow (fun z \rightarrow (x z))) y \rightarrow fun z \rightarrow (y z)$

Beta Reductions (CBV)

- ► $(\lambda X.X) Z \rightarrow Z$
- $(\lambda x.y) z \rightarrow y$
- $(\lambda x.x y) z \rightarrow z y$
 - A function that applies its argument to y

Beta Reductions (CBV)

- $(\lambda x.x y) (\lambda z.z) \rightarrow (\lambda z.z) y \rightarrow y$
- ► $(\lambda x.\lambda y.x y) z \rightarrow \lambda y.z y$
 - A curried function of two arguments
 - Applies its first argument to its second
- ► $(\lambda x.\lambda y.x y) (\lambda z.zz) x \rightarrow (\lambda y.(\lambda z.zz)y)x \rightarrow (\lambda z.zz)x \rightarrow x x$