
CMSC 330: Organization of
Programming Languages

Lambda Calculus

1
CMSC330 Spring 2024

Turing Machine

2

3

Turing Completeness

Turing machines are the most powerful
description of computation possible
• They define the Turing-computable functions

A programming language is Turing complete if
• It can map every Turing machine to a program
• A program can be written to emulate a Turing machine
• It is a superset of a known Turing-complete language

Most powerful programming language possible
• Since Turing machine is most powerful automaton

4

Programming Language Expressiveness

So what language features are needed to express
all computable functions?
• What’s a minimal language that is Turing Complete?

Observe: some features exist just for convenience
• Multi-argument functions foo (a, b, c)

Ø Use currying or tuples
• Loops while (a < b) …

Ø Use recursion
• Side effects a := 1

Ø Use functional programming pass “heap” as an argument to
each function, return it when with function’s result:
 effectful : ‘a → ‘s → (‘s * ‘a)

5

Programming Language Expressiveness

It is not difficult to achieve Turing Completeness
• Lots of things are ‘accidentally’ TC

Some fun examples:
• x86_64 `mov` instruction
• Minecraft
• Magic: The Gathering
• Java Generics

There’s a whole cottage industry of proving things
to be TC
But: What is a “core” language that is TC?

6

Lambda Calculus (λ-calculus)

Proposed in 1930s by
• Alonzo Church
 (born in Washingon DC!)

Formal system
• Designed to investigate functions & recursion
• For exploration of foundations of mathematics

Now used as
• Tool for investigating computability
• Basis of functional programming languages

Ø Lisp, Scheme, ML, OCaml, Haskell…

7

Why Study Lambda Calculus?
It is a “core” language
• Very small but still Turing complete

But with it can explore general ideas
• Language features, semantics, proof systems,

algorithms, …
Plus, higher-order, anonymous functions (aka
lambdas) are now very popular!
• C++ (C++11), PHP (PHP 5.3.0), C# (C# v2.0), Delphi

(since 2009), Objective C, Java 8, Swift, Python,
Ruby (Procs), … (and functional languages like
OCaml, Haskell, F#, …)

• Excel, as of 2021!

8

Lambda Calculus Syntax

A lambda calculus expression is defined as
 e ::= x variable
 | λx.e abstraction (fun def)
 | e e application (fun call)

Ø This grammar describes ASTs; not for parsing - ambiguous!
Ø Lambda expressions also known as lambda terms

• λx.e is like (fun x -> e) in OCaml
That’s it! Nothing but higher-order functions

9

Three Conventions

Scope of λ extends as far right as possible
• Subject to scope delimited by parentheses
• λx. λy.x y is same as λx.(λy.(x y))

Function application is left-associative
• x y z is (x y) z
• Same rule as OCaml

As a convenience, we use the following “syntactic
sugar” for local declarations
• let x = e1 in e2 is short for (λx.e2) e1

Quiz #1

10

A. True
B. False

λx.(y z) and λx.y z are equivalent

Quiz #1

λx.(y z) and λx.y z are equivalent

11

A.True
B. False

Quiz #2

This term is equivalent to which of
the following?

λx.x a b

12

A. (λx.x) (a b)
B. (((λx.x) a) b)
C. λx.(x (a b))
D. (λx.((x a) b))

Quiz #2

This term is equivalent to which of
the following?

λx.x a b

13

A. (λx.x) (a b)
B. (((λx.x) a) b)
C. λx.(x (a b))
D. (λx.((x a) b))

14

Lambda Calculus Semantics
Evaluation: All that’s involved are function calls
(λx.e1) e2
• Evaluate e1 with x replaced by e2

This application is called beta-reduction
• (λx.e1) e2 → e1[x:=e2]

Ø e1[x:=e2] is e1 with occurrences of x replaced by e2
Ø This operation is called substitution

• Replace formals with actuals
• Instead of using environment to map formals to actuals

• We allow reductions to occur anywhere in a term
Ø Order reductions are applied does not affect final value!

When a term cannot be reduced further it is in
beta normal form

15

Beta Reduction Example

(λx.λz.x z) y
→ (λx.(λz.(x z))) y // since λ extends to right

→ (λx.(λz.(x z))) y // apply (λx.e1) e2 → e1[x:=e2]
 // where e1 = λz.(x z), e2 = y

→ λz.(y z) // final result

Equivalent OCaml code
• (fun x -> (fun z -> (x z))) y → fun z -> (y z)

Parameters
• Formal
• Actual

18

Beta Reductions (CBV)

(λx.x) z →

(λx.y) z →

(λx.x y) z →
• A function that applies its argument to y

z

y

z y

19

Beta Reductions (CBV)

(λx.x y) (λz.z) →

(λx.λy.x y) z →
• A curried function of two arguments
• Applies its first argument to its second

(λx.λy.x y) (λz.zz) x →

(λz.z) y → y

λy.z y

(λy.(λz.zz)y)x → (λz.zz)x →x x

