
CMSC 330: Organization of Programming 

Languages

Type Inference and Unification
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Type checking: use declared types to check types are 

correct

Type inference:

• Infer the most general types that could have been declared, 

and type checks the code without the type information

Type Checking vs Type Inference

let apply (f:('a->'b)) (x:'a):'b = f x

let apply f x = f x
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The Type Inference Algorithm

Input: A program without types 

Output: A program with type for every expression, which  

is annotated with its most general type
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Why do we want to infer types?

Reduces syntactic overhead of expressive types

• // C++ Declare a vector of vectors of integers

std::vector<std::vector<int>> matrix;

Guaranteed to produce most general type

Widely regarded as important language innovation

Illustrative example of a flow-insensitive static analysis 

algorithm
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History

Original type inference algorithm 
• Invented by Haskell Curry and Robert Feys for the simply typed 

lambda calculus in 1958

In 1969, Hindley
• extended the algorithm to a richer language and proved it always 

produced the most general type 

In 1978, Milner 
• independently developed equivalent algorithm, called algorithm W, 

during his work designing ML

In 1982, Damas proved the algorithm was complete.
• Currently used in many languages: ML, Ada, Haskell, C# 3.0, F#, 

Visual Basic .Net 9.0. Have been plans for Fortress, Perl 6, 
C++0x,…
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Type Inference: Basic Idea

Example

What is the type of the expression?

• +  has type: int  → int  → int

• 2 has type: int

• Since we are applying + to x we need x : int

• Therefore, fun x -> 2 + x has type int → int

fun x -> 2 + x

 -: int -> int = <fun>
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Type Inference: Basic Idea

Example

What is the type of the expression?

• 3 has type: int

• Since we are applying f to 3 we need f : int → a and  the result is 

of type a

• Therefore, fun f → f 3 has type  (int → a) →a

fun f  =>  f 3

  -:(int → a) →  a = <fun>
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Type Inference: Basic Idea

Example

What is the type of the expression?

fun f → f (f 3)
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Type Inference: Basic Idea

Example

What is the type of the expression?

fun f → f (f “hi”)
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Type Inference: Basic Idea

Example

What is the type of the expression?

fun f → f (f 3, f 4)
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Type Inference: Complex Example

let square = fun z → z * z in

    fun f → fun x → fun y → 

    if (f x y) then (f (square x) y)

    else (f x (f x y))

* : int → (int → int) 

z : int

square : int → int 

f : ‘a → (‘b → bool), x: ‘a, y: ‘b  

a: int  

b: bool  

(int → bool → bool) →int →bool → bool  
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Unification

Unification is an algorithmic process of solving equations 

between symbolic expressions

Unifies two terms

Used for pattern matching and type inference

Simple examples

• int * x and  y * (bool * bool) are unifiable

➢  y = int

➢ x = (bool * bool)

• int * int and int * bool are not unifiable
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Type Inference Algorithm

Parse program to build parse tree

Assign type variables to nodes in tree

Generate constraints:

• From environment: literals (2), built-in operators (+), known 

functions (tail)

• From form of parse tree: e.g., application and abstraction nodes

Solve constraints using unification

Determine types of top-level declarations

CMSC330 Spring 2025 13



Step 1: Parse Program

Parse program text to construct parse tree

let f x = 2 + x

Infix operators are converted to 

Curried function application during 

parsing: (not necessary)

       2 + x →  (+) 2 x
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Step 2: Assign type variables to nodes 

Variables are given same type as binding occurrence

f x = 2 + x
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Step 3: Add Constraints

t_0 = t_1 -> t_6

t_4 = t_1 -> t_6

t_2 = t_3 -> t_4

t_2 = int -> (int -> int)

t_3 = int

let f x = 2 + x

CMSC330 Spring 2025 16



Step 4: Solve Constraints

t_0 = t_1 -> t_6

t_4 = t_1 -> t_6

t_2 = t_3 -> t_4

t_2 = int -> (int -> int)

t_3 = int

t_3 -> t_4 = int -> (int -> int)

t_3 = int

t_4 = int -> int
t_0 = t_1 -> t_6

t_4 = t_1 -> t_6

t_4 = int -> int

t_2 = int -> (int -> int)

t_3 = int
t_1 -> t_6 = int -> int

t_1 = int

t_6 = int

t_0 = int -> int

t_1 = int

t_6 = int

t_4 = int -> int

t_2 = int -> (int -> int)

t_3 = int

let f x = 2 + x

CMSC330 Spring 2025 17



Step 5: Determine type of declaration

let f x = 2 + x

val f : int -> int =<fun>t_0 = int -> int

t_1 = int

t_6 = int -> int

t_4 = int -> int

t_2 = int -> int -> int

t_3 = int
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Constraints from Application Nodes

Function application (apply f to x) 

• Type of f  (t_0 in figure) must be domain → range

• Domain of f must be type of argument x  (t_1 in fig) 

• Range of f must be result of application  (t_2 in fig)

• Constraint:  t_0 = t_1 -> t_2

f x 

t_0 = t_1 -> t_2
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Constraints from Abstractions

Function declaration:

• Type of f (t_0 in figure) must domain → range

• Domain is type of abstracted variable x (t_1 in fig)

• Range is type of function body e (t_2 in fig)

• Constraint: t_0 = t_1 -> t_2

let f x = e

t_0 = t_1 -> t_2
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Example:

Step 1:

• Build Parse Tree

Inferring Polymorphic Types

let f g = g 2

val f : (int -> t_4) -> t_4 = <fun>
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Inferring Polymorphic Types

Example:

Step 2:                                                            

• Assign type variables

let f g = g 2

val f : (int -> t_4) -> t_4 = fun
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Inferring Polymorphic Types

Example:

Step 3: 

• Generate constraints

t_0 = t_1 -> t_4

t_1 = t_3 -> t_4

t_3 = int

let f g = g 2

val f : (int -> t_4) -> t_4 = <fun>
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Inferring Polymorphic Types

Example:

Step 4:                                                              

• Solve constraints

t_0 = t_1 -> t_4

t_1 = t_3 -> t_4

t_3 = int

t_0 = (int -> t_4) -> t_4

t_1 =  int -> t_4

t_3 =  int

let f g = g 2

val f : (int -> t_4) -> t_4 = <fun>

::  :
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Inferring Polymorphic Types

Example:

Step 5:                                                     

• Determine type of top-level declaration

t_0 = (int -> t_4) -> t_4

t_1 =  int -> t_4

t_3 =  int

Unconstrained type 
variables become 
polymorphic types

let f g = g 2

val f : (int -> t_4) -> t_4 = <fun>

::  :
CMSC330 Spring 2025 25



Using Polymorphic Functions

Function:

Possible applications:

let add x = 2 + x

val add : int -> int = <fun>

f add

:- int = 4

let isEven x = mod (x, 2) == 0

val isEven: int -> bool = <fun>

f isEven

:- bool= true

let f g = g 2

val f : (int -> t_4) -> t_4 = <fun>
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Recognizing Type Errors

Function:

Incorrect use

Type error:                                                          

cannot unify bool → bool and  int → t

let not x = if x then true else false 

val not : bool -> bool = <fun>

f not

> Error: operator and operand don’t agree

  operator domain: int -> a

  operand:         bool-> bool

let f g = g 2

val f : (int -> t_4) -> t_4 = <fun>
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Another Example

Example:

Step 1:                                                                

• Build Parse Tree

let f (g,x) = g (g x)

val f : ((t_8 -> t_8) * t_8) -> t_8
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Another Example

Example:

Step 2:                                                            

• Assign type variables

let f (g,x) = g (g x)

val f : ((t_8 -> t_8) * t_8) -> t_8
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Another Example

Example:

Step 3:                                                        

• Generate constraints t_0 = t_3 -> t_8

t_3 = (t_1, t_2)

t_1 = t_7 -> t_8

t_1 = t_2 -> t_7

let f (g,x) = g (g x)

val f : ((t_8 -> t_8) * t_8) -> t_8
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Another Example

Example:

Step 4:                                                               

• Solve constraints t_0 = t_3 -> t_8

t_3 = (t_1, t_2)

t_1 = t_7 -> t_8

t_1 = t_2 -> t_7

t_0 = (t_8 -> t_8, t_8) -> t_8

let f (g,x) = g (g x)

val f : ((t_8 -> t_8) * t_8) -> t_8
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Another Example

Example:

Step 5:                                                     

• Determine type of f t_0 = t_3 -> t_8

t_3 = (t_1 * t_2)

t_1 = t_7 -> t_8

t_1 = t_2 -> t_7

t_0 = ((t_8 -> t_8) * t_8) -> t_8

let f (g,x) = g (g x)

val f : ((t_8 -> t_8) * t_8) -> t_8

CMSC330 Spring 2025 32



Most General Type

Type inference produces the most general type

Functions may have many less general types

Less general types are all instances of most general 
type, also called the principal type

val map : (t_1  -> int, [t_1])  -> [int]

val map : (bool -> t_2, [bool]) -> [t_2]

val map : (char -> int, [cChar]) -> [int]

let rec map f lst = 

  match lst with

  [] -> [] 

 | hd :: tl -> f hd :: (map f tl)

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
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Complexity of Type Inference Algorithm

When Hindley/Milner type inference algorithm was 

developed, its complexity was unknown

In 1989, Kanellakis, Mairson, and Mitchell proved that the 

problem was exponential-time complete

Usually linear in practice though…

• Running time is exponential in the depth of polymorphic 

declarations
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Type Inference: Key Points

Type inference computes the types of expressions
• Does not require type declarations for variables

• Finds the most general type by solving constraints

• Leads to polymorphism

Sometimes better error detection than type checking
• Type may indicate a programming error even if no type error

Some costs

• More difficult to identify program line that causes error

• Natural implementation requires uniform representation sizes

Idea can be applied to other program properties

• Discover properties of program using same kind of analysis
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Example: Swap Two Values

OCaml

C++

let swap (x, y) =

 let temp = !x in

   (x := !y; y := temp)

val swap : 'a ref * 'a ref -> unit = <fun> 

template <typename T>

void swap(T& x, T& y){

      T tmp = x;  x=y;  y=tmp;

}

Declarations both swap two values polymorphically, but they are 

compiled very differently
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Implementation

OCaml

• swap is compiled into one function

• Typechecker determines how function can be used

C++

• swap is compiled differently for each instance

    (details beyond scope of this course …)

Why the difference?

• OCaml ref cell is passed by pointer. The local x is a pointer to 
value on heap, so its size is constant

• C++ arguments passed by reference (pointer), but local x is on 
the stack, so its size depends on the type
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Polymorphism vs Overloading

Parametric polymorphism
• Single algorithm may be given many types

• Type variable may be replaced by any  type

• if f:t→t then f:int→int, f:bool→bool, ...   

Overloading
• A single symbol may refer to more than one algorithm

• Each algorithm may have different type

• Choice of algorithm determined by type context

• Types of symbol may be arbitrarily different

• In ML, + has types  int*int→int, real*real→real, no 
others

• Haskel permits more general overloading and requires user 
assistance
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Varieties of Polymorphism 

Parametric polymorphism A single piece of code is typed 
generically
• Imperative or first-class polymorphism

• ML-style or let-polymorphism

Ad-hoc polymorphism The same expression exhibit different 
behaviors when viewed in different types
• Overloading

• Multi-method dispatch

• intentional polymorphism

Subtype polymorphism A single term may have many types 
using the rule of subsumption allowing to selectively forget 
information
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Summary 

Types are important in modern languages

• Program organization and documentation

• Prevent program errors

• Provide important information to compiler

Type inference

• Determine best type for an expression, based on known 

information about symbols in the expression

Polymorphism

• Single algorithm (function) can have many types
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