
CMSC 330: Organization of Programming

Languages

Type Inference and Unification

CMSC330 Spring 2025 1

Type checking: use declared types to check types are

correct

Type inference:

• Infer the most general types that could have been declared,

and type checks the code without the type information

Type Checking vs Type Inference

let apply (f:('a->'b)) (x:'a):'b = f x

let apply f x = f x

CMSC330 Spring 2025 2

The Type Inference Algorithm

Input: A program without types

Output: A program with type for every expression, which

is annotated with its most general type

CMSC330 Spring 2025 3

Why do we want to infer types?

Reduces syntactic overhead of expressive types

• // C++ Declare a vector of vectors of integers

std::vector<std::vector<int>> matrix;

Guaranteed to produce most general type

Widely regarded as important language innovation

Illustrative example of a flow-insensitive static analysis

algorithm

CMSC330 Spring 2025 4

History

Original type inference algorithm
• Invented by Haskell Curry and Robert Feys for the simply typed

lambda calculus in 1958

In 1969, Hindley
• extended the algorithm to a richer language and proved it always

produced the most general type

In 1978, Milner
• independently developed equivalent algorithm, called algorithm W,

during his work designing ML

In 1982, Damas proved the algorithm was complete.
• Currently used in many languages: ML, Ada, Haskell, C# 3.0, F#,

Visual Basic .Net 9.0. Have been plans for Fortress, Perl 6,
C++0x,…

CMSC330 Spring 2025 5

Type Inference: Basic Idea

Example

What is the type of the expression?

• + has type: int → int → int

• 2 has type: int

• Since we are applying + to x we need x : int

• Therefore, fun x -> 2 + x has type int → int

fun x -> 2 + x

 -: int -> int = <fun>

CMSC330 Spring 2025 6

Type Inference: Basic Idea

Example

What is the type of the expression?

• 3 has type: int

• Since we are applying f to 3 we need f : int → a and the result is

of type a

• Therefore, fun f → f 3 has type (int → a) →a

fun f => f 3

 -:(int → a) → a = <fun>

CMSC330 Spring 2025 7

Type Inference: Basic Idea

Example

What is the type of the expression?

fun f → f (f 3)

CMSC330 Spring 2025 8

Type Inference: Basic Idea

Example

What is the type of the expression?

fun f → f (f “hi”)

CMSC330 Spring 2025 9

Type Inference: Basic Idea

Example

What is the type of the expression?

fun f → f (f 3, f 4)

CMSC330 Spring 2025 10

Type Inference: Complex Example

let square = fun z → z * z in

 fun f → fun x → fun y →

 if (f x y) then (f (square x) y)

 else (f x (f x y))

* : int → (int → int)

z : int

square : int → int

f : ‘a → (‘b → bool), x: ‘a, y: ‘b

a: int

b: bool

(int → bool → bool) →int →bool → bool
CMSC330 Spring 2025 11

Unification

Unification is an algorithmic process of solving equations

between symbolic expressions

Unifies two terms

Used for pattern matching and type inference

Simple examples

• int * x and y * (bool * bool) are unifiable

➢ y = int

➢ x = (bool * bool)

• int * int and int * bool are not unifiable

CMSC330 Spring 2025 12

Type Inference Algorithm

Parse program to build parse tree

Assign type variables to nodes in tree

Generate constraints:

• From environment: literals (2), built-in operators (+), known

functions (tail)

• From form of parse tree: e.g., application and abstraction nodes

Solve constraints using unification

Determine types of top-level declarations

CMSC330 Spring 2025 13

Step 1: Parse Program

Parse program text to construct parse tree

let f x = 2 + x

Infix operators are converted to

Curried function application during

parsing: (not necessary)

 2 + x → (+) 2 x

CMSC330 Spring 2025 14

Step 2: Assign type variables to nodes

Variables are given same type as binding occurrence

f x = 2 + x

CMSC330 Spring 2025 15

Step 3: Add Constraints

t_0 = t_1 -> t_6

t_4 = t_1 -> t_6

t_2 = t_3 -> t_4

t_2 = int -> (int -> int)

t_3 = int

let f x = 2 + x

CMSC330 Spring 2025 16

Step 4: Solve Constraints

t_0 = t_1 -> t_6

t_4 = t_1 -> t_6

t_2 = t_3 -> t_4

t_2 = int -> (int -> int)

t_3 = int

t_3 -> t_4 = int -> (int -> int)

t_3 = int

t_4 = int -> int
t_0 = t_1 -> t_6

t_4 = t_1 -> t_6

t_4 = int -> int

t_2 = int -> (int -> int)

t_3 = int
t_1 -> t_6 = int -> int

t_1 = int

t_6 = int

t_0 = int -> int

t_1 = int

t_6 = int

t_4 = int -> int

t_2 = int -> (int -> int)

t_3 = int

let f x = 2 + x

CMSC330 Spring 2025 17

Step 5: Determine type of declaration

let f x = 2 + x

val f : int -> int =<fun>t_0 = int -> int

t_1 = int

t_6 = int -> int

t_4 = int -> int

t_2 = int -> int -> int

t_3 = int

CMSC330 Spring 2025 18

Constraints from Application Nodes

Function application (apply f to x)

• Type of f (t_0 in figure) must be domain → range

• Domain of f must be type of argument x (t_1 in fig)

• Range of f must be result of application (t_2 in fig)

• Constraint: t_0 = t_1 -> t_2

f x

t_0 = t_1 -> t_2

CMSC330 Spring 2025 19

Constraints from Abstractions

Function declaration:

• Type of f (t_0 in figure) must domain → range

• Domain is type of abstracted variable x (t_1 in fig)

• Range is type of function body e (t_2 in fig)

• Constraint: t_0 = t_1 -> t_2

let f x = e

t_0 = t_1 -> t_2

CMSC330 Spring 2025 20

Example:

Step 1:

• Build Parse Tree

Inferring Polymorphic Types

let f g = g 2

val f : (int -> t_4) -> t_4 = <fun>

CMSC330 Spring 2025 21

Inferring Polymorphic Types

Example:

Step 2:

• Assign type variables

let f g = g 2

val f : (int -> t_4) -> t_4 = fun

CMSC330 Spring 2025 22

Inferring Polymorphic Types

Example:

Step 3:

• Generate constraints

t_0 = t_1 -> t_4

t_1 = t_3 -> t_4

t_3 = int

let f g = g 2

val f : (int -> t_4) -> t_4 = <fun>

CMSC330 Spring 2025 23

Inferring Polymorphic Types

Example:

Step 4:

• Solve constraints

t_0 = t_1 -> t_4

t_1 = t_3 -> t_4

t_3 = int

t_0 = (int -> t_4) -> t_4

t_1 = int -> t_4

t_3 = int

let f g = g 2

val f : (int -> t_4) -> t_4 = <fun>

::  :
CMSC330 Spring 2025 24

Inferring Polymorphic Types

Example:

Step 5:

• Determine type of top-level declaration

t_0 = (int -> t_4) -> t_4

t_1 = int -> t_4

t_3 = int

Unconstrained type
variables become
polymorphic types

let f g = g 2

val f : (int -> t_4) -> t_4 = <fun>

::  :
CMSC330 Spring 2025 25

Using Polymorphic Functions

Function:

Possible applications:

let add x = 2 + x

val add : int -> int = <fun>

f add

:- int = 4

let isEven x = mod (x, 2) == 0

val isEven: int -> bool = <fun>

f isEven

:- bool= true

let f g = g 2

val f : (int -> t_4) -> t_4 = <fun>

CMSC330 Spring 2025 26

Recognizing Type Errors

Function:

Incorrect use

Type error:

cannot unify bool → bool and int → t

let not x = if x then true else false

val not : bool -> bool = <fun>

f not

> Error: operator and operand don’t agree

 operator domain: int -> a

 operand: bool-> bool

let f g = g 2

val f : (int -> t_4) -> t_4 = <fun>

CMSC330 Spring 2025 27

Another Example

Example:

Step 1:

• Build Parse Tree

let f (g,x) = g (g x)

val f : ((t_8 -> t_8) * t_8) -> t_8

CMSC330 Spring 2025 28

Another Example

Example:

Step 2:

• Assign type variables

let f (g,x) = g (g x)

val f : ((t_8 -> t_8) * t_8) -> t_8

CMSC330 Spring 2025 29

Another Example

Example:

Step 3:

• Generate constraints t_0 = t_3 -> t_8

t_3 = (t_1, t_2)

t_1 = t_7 -> t_8

t_1 = t_2 -> t_7

let f (g,x) = g (g x)

val f : ((t_8 -> t_8) * t_8) -> t_8

CMSC330 Spring 2025 30

Another Example

Example:

Step 4:

• Solve constraints t_0 = t_3 -> t_8

t_3 = (t_1, t_2)

t_1 = t_7 -> t_8

t_1 = t_2 -> t_7

t_0 = (t_8 -> t_8, t_8) -> t_8

let f (g,x) = g (g x)

val f : ((t_8 -> t_8) * t_8) -> t_8

CMSC330 Spring 2025 31

Another Example

Example:

Step 5:

• Determine type of f t_0 = t_3 -> t_8

t_3 = (t_1 * t_2)

t_1 = t_7 -> t_8

t_1 = t_2 -> t_7

t_0 = ((t_8 -> t_8) * t_8) -> t_8

let f (g,x) = g (g x)

val f : ((t_8 -> t_8) * t_8) -> t_8

CMSC330 Spring 2025 32

Most General Type

Type inference produces the most general type

Functions may have many less general types

Less general types are all instances of most general
type, also called the principal type

val map : (t_1 -> int, [t_1]) -> [int]

val map : (bool -> t_2, [bool]) -> [t_2]

val map : (char -> int, [cChar]) -> [int]

let rec map f lst =

 match lst with

 [] -> []

 | hd :: tl -> f hd :: (map f tl)

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

CMSC330 Spring 2025 33

Complexity of Type Inference Algorithm

When Hindley/Milner type inference algorithm was

developed, its complexity was unknown

In 1989, Kanellakis, Mairson, and Mitchell proved that the

problem was exponential-time complete

Usually linear in practice though…

• Running time is exponential in the depth of polymorphic

declarations

CMSC330 Spring 2025 34

Type Inference: Key Points

Type inference computes the types of expressions
• Does not require type declarations for variables

• Finds the most general type by solving constraints

• Leads to polymorphism

Sometimes better error detection than type checking
• Type may indicate a programming error even if no type error

Some costs

• More difficult to identify program line that causes error

• Natural implementation requires uniform representation sizes

Idea can be applied to other program properties

• Discover properties of program using same kind of analysis

CMSC330 Spring 2025 35

Example: Swap Two Values

OCaml

C++

let swap (x, y) =

 let temp = !x in

 (x := !y; y := temp)

val swap : 'a ref * 'a ref -> unit = <fun>

template <typename T>

void swap(T& x, T& y){

 T tmp = x; x=y; y=tmp;

}

Declarations both swap two values polymorphically, but they are

compiled very differently
CMSC330 Spring 2025 37

Implementation

OCaml

• swap is compiled into one function

• Typechecker determines how function can be used

C++

• swap is compiled differently for each instance

 (details beyond scope of this course …)

Why the difference?

• OCaml ref cell is passed by pointer. The local x is a pointer to
value on heap, so its size is constant

• C++ arguments passed by reference (pointer), but local x is on
the stack, so its size depends on the type

CMSC330 Spring 2025 38

Polymorphism vs Overloading

Parametric polymorphism
• Single algorithm may be given many types

• Type variable may be replaced by any type

• if f:t→t then f:int→int, f:bool→bool, ...

Overloading
• A single symbol may refer to more than one algorithm

• Each algorithm may have different type

• Choice of algorithm determined by type context

• Types of symbol may be arbitrarily different

• In ML, + has types int*int→int, real*real→real, no
others

• Haskel permits more general overloading and requires user
assistance

CMSC330 Spring 2025 39

Varieties of Polymorphism

Parametric polymorphism A single piece of code is typed
generically
• Imperative or first-class polymorphism

• ML-style or let-polymorphism

Ad-hoc polymorphism The same expression exhibit different
behaviors when viewed in different types
• Overloading

• Multi-method dispatch

• intentional polymorphism

Subtype polymorphism A single term may have many types
using the rule of subsumption allowing to selectively forget
information

CMSC330 Spring 2025 40

Summary

Types are important in modern languages

• Program organization and documentation

• Prevent program errors

• Provide important information to compiler

Type inference

• Determine best type for an expression, based on known

information about symbols in the expression

Polymorphism

• Single algorithm (function) can have many types

CMSC330 Spring 2025 41

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Type Checking vs Type Inference
	Slide 3: The Type Inference Algorithm
	Slide 4: Why do we want to infer types?
	Slide 5: History
	Slide 6: Type Inference: Basic Idea
	Slide 7: Type Inference: Basic Idea
	Slide 8: Type Inference: Basic Idea
	Slide 9: Type Inference: Basic Idea
	Slide 10: Type Inference: Basic Idea
	Slide 11: Type Inference: Complex Example
	Slide 12: Unification
	Slide 13: Type Inference Algorithm
	Slide 14: Step 1: Parse Program
	Slide 15: Step 2: Assign type variables to nodes
	Slide 16: Step 3: Add Constraints
	Slide 17: Step 4: Solve Constraints
	Slide 18: Step 5: Determine type of declaration
	Slide 19: Constraints from Application Nodes
	Slide 20: Constraints from Abstractions
	Slide 21: Inferring Polymorphic Types
	Slide 22: Inferring Polymorphic Types
	Slide 23: Inferring Polymorphic Types
	Slide 24: Inferring Polymorphic Types
	Slide 25: Inferring Polymorphic Types
	Slide 26: Using Polymorphic Functions
	Slide 27: Recognizing Type Errors
	Slide 28: Another Example
	Slide 29: Another Example
	Slide 30: Another Example
	Slide 31: Another Example
	Slide 32: Another Example
	Slide 33: Most General Type
	Slide 34: Complexity of Type Inference Algorithm
	Slide 35: Type Inference: Key Points
	Slide 37: Example: Swap Two Values
	Slide 38: Implementation
	Slide 39: Polymorphism vs Overloading
	Slide 40: Varieties of Polymorphism
	Slide 41: Summary

