CMSC 330: Organization of Programming
Languages

Type Inference and Unification

CMSC330 Spring 2025

Type Checking vs Type Inference

» Type checking: use declared types to check types are
correct

let apply (f:('a->'b)) (x:'a):'b = f x

» Type inference:

let apply £ x = £ x

* Infer the most general types that could have been declared,
and type checks the code without the type information

CMSC330 Spring 2025

The Type Inference Algorithm

» Input: A program without types

» Output: A program with type for every expression, which
IS annotated with its most general type

CMSC330 Spring 2025

Why do we want to infer types?

» Reduces syntactic overhead of expressive types

* /| C++ Declare a vector of vectors of integers
std::vector<std::vector<int>> matrix;

» Guaranteed to produce most general type
» Widely regarded as important language innovation

» lllustrative example of a flow-insensitive static analysis
algorithm

CMSC330 Spring 2025

History

Original type inference algorithm

* Invented by Haskell Curry and Robert Feys for the simply typed
lambda calculus in 1958

» 1IN 1969, Hindley

* extended the algorithm to a richer language and proved it always
produced the most general type

» 1IN 1978, Milner

* independently developed equivalent algorithm, called algorithm W,
during his work designing ML

» In 1982, Damas proved the algorithm was complete.

* Currently used in many languages: ML, Ada, Haskell, C# 3.0, F#,
Visual Basic .Net 9.0. Have been plans for Fortress, Perl 6,
C++0x,...

v

CMSC330 Spring 2025

Type Inference: Basic Idea

» Example

fun x -> 2 + x
-: int -> int = <fun>

» What is the type of the expression?
*+ hastype:int — int — int
* 2 has type: int
* Since we are applying + to x we need X : int
* Therefore, fun x -> 2 + x hastype int — int

CMSC330 Spring 2025

Type Inference: Basic Idea

» Example
fun £ => £ 3
-:(int > a) > a = <fun>

» What is the type of the expression?
* 3 has type: int

* Since we are applying fto 3 we need f : int > a and the result is
of type a

* Therefore, fun £ —» £ 3 hastype (int > a) —»a

CMSC330 Spring 2025

Type Inference: Basic Idea

» Example

fun £ > £ (£ 3)

» What is the type of the expression?

CMSC330 Spring 2025

Type Inference: Basic Idea

» Example

fun £ > £ (£ “hi”)

» What is the type of the expression?

CMSC330 Spring 2025

Type Inference: Basic Idea

» Example

fun £ > £ (£ 3, £ 4)

» What is the type of the expression?

CMSC330 Spring 2025

10

Type Inference: Complex Example

let square = fun z - z * z in
fun £ > fun x > fun y >
if (f x y) then (f (square x) vy)
else (f x (f x y))

* : int —» (int — int)
z : int
square : int — int
£f: ‘a—> (‘b > bool), x: ‘a, y: ‘b
a: int
b: bool

(int > bool — bool) —>int —5bool — bool
CMSC330 Spring 2025

11

Unification

» Unification is an algorithmic process of solving equations
between symbolic expressions

» Unifies two terms
» Used for pattern matching and type inference

Simple examples
* int*xand y * (bool * bool) are unifiable
> y=int
» X = (bool * bool)

¥

 Int*int and int * bool are not unifiable

CMSC330 Spring 2025 12

Type Inference Algorithm

» Parse program to build parse tree
Assign type variables to nodes In tree

» Generate constraints:

* From environment: literals (2), built-in operators (+), known
functions (tail)

* From form of parse tree: e.g., application and abstraction nodes
» Solve constraints using unification

» Determine types of top-level declarations

¥

CMSC330 Spring 2025

13

Step 1: Parse Program

» Parse program text to construct parse tree

let £ x 2 + x

Infix operators are converted to
Curried function application during
parsing: (not necessary)

2+X— (+)2X

CMSC330 Spring 2025

14

Step 2: Assign type variables to nodes

Variables are given same type as binding occurrence

CMSC330 Spring 2025

15

Step 3: Add Constraints

(@) =: t_6
t_d = t_1 -> t_6

t0=t1l->¢t6
t4=t1l->¢t6
t2=¢t3->t 4

t 2 = int -> (int -> int)
t 3 = int

CMSC330 Spring 2025 16

Step 4: Solve Constraints

let £ x 2 +

t0o=t1 ->
t4=t1 >
TEZ2|=t 3 ->
t 2 |= int ->
t 3 = int
t0=t1 ->
t4|=t 1 >
t 4|= int ->
t 2 = int ->
t 3 = int
t 0 = int ->
t 1 = int
t 6 = int
t 4 = int ->
t 2 = int ->
t 3 = int

CMSC330 Spring 2025

t
t
t
(

t 6

<«

t 6
int
(int -> int)

int

int
(int -> int)

e—

t—
t—

t

t—
t—

1

1
6

3 =
4

-> t 4

-> t 6

int

int -> (int -> int)

!

int -> int

= int

int

int -> int

!

17

Step 5: Determine type of declaration

let £ x =2 + x
int -> int val £ : int -> int =<fun>
int
int -> int
int -> int
int -> int -> int
int

= o Bk O

N

o ot ot ot ot o
N R N

w

CMSC330 Spring 2025 18

Constraints from Application Nodes

Ceor s+ 22 £ x

t0=t1->t2

» Function application (apply f to x)

* Type of f (t_O in figure) must be domain — range
* Domain of f must be type of argument x (t_1 in fig)

* Range of f must be result of application (t 2 in fig)
e Constraint: t 0=t 1->t 2

CMSC330 Spring 2025

19

Constraints from Abstractions

t0=¢t1->t2

» Function declaration:

* Type of f (t_O Iin figure) must domain — range
* Domain is type of abstracted variable x (t_1 in fig)

* Range is type of function body e (t_2 in fig)
e Constraint:t 0=t 1->t 2

CMSC330 Spring 2025

20

Inferring Polymorphic Types

» Example: let £ g =g 2
» Step 1: val £ : (int -> t 4) -> t 4 = <fun>
* Build Parse Tree

CMSC330 Spring 2025

Inferring Polymorphic Types

» Example: let £ g =g 2
. Step - val £ : (int -> t 4) -> t 4

e Assign type variables

fun

CMSC330 Spring 2025

22

Inferring Polymorphic Types

» Example: let £g =g 2
» Step 3: val £ : (int -> t 4) -> t 4 = <fun>

e Generate constraints

t0=t1->t 4
tl=t3->¢t4
t 3 = int

CMSC330 Spring 2025 23

Inferring Polymorphic Types

» Example: let £ g =g 2
val £ : (int -> t 4) -> t 4
> ESRap'4:

e Solve constraints

t0=t1->t 4
tl=¢t3->t4
t 3 = int
t 0= (int -> t 4) -> t 4
t 1 = int -> t 4
t 3 = int

CMSC330 Spring 2025

<fun>

24

Inferring Polymorphic Types

» Example: let £ g =g 2
. Step 5- val £ : (int -> t 4) -> t 4

* Determine type of top-level declaration
Unconstrained type

variables become
polymorphic types

0
1
3

(int -> t 4) -> t 4
int -> t_4
int

o ot ot
N

CMSC330 Spring 2025

<fun>

25

Using Polymorphic Functions

» Function: let £ g=g 2
val £ : (int -> t 4) -> t 4

» Possible applications:

let add x = 2 + x
val add : int -> int = <fun>

f add
:= int = 4

let isEven x = mod (x, 2) ==
val isEven: int -> bool = <fun>

f isEven
:= bool= true

CMSC330 Spring 2025

<fun>

26

Recognizing Type Errors

» Function: let £ g=g 2
val £ : (int -> t 4) -> t 4

» INncorrect use

let not x = if x then true else false

val not : bool -> bool = <fun>

f not

> Error: operator and operand don’t agree
operator domain: int -> a
operand: bool-> bool

» Type error:
cannot unify bool — bool and int >t

CMSC330 Spring 2025

<fun>

27

Another Example

» Example:

. Step 1:
 Build Parse Tree

val £ :

CMSC330 Spring 2025

((t.8 -> t 8) * t 8) -> t_8

28

Another Example

» Example: let £ (g,x) = g (g x)
» Step 2: val £ : ((t_ 8 -> t 8) * t 8) -> t_8

e Assign type variables

CMSC330 Spring 2025 29

Another Example

» Example:
val £ : ((t 8 ->t 8) *t 8) ->t 8
» Step 3:
e Generate constraints t0=¢t3->t38
t 3=(t1, t2)
t1=t7->t8
tl=t2->¢t7

CMSC330 Spring 2025 30

Another Example

» Example: let £ (g,x) =g (g x)

val £ : ((t 8 -> t 8) * t 8)

> Step 4:
e Solve constraints

(£ :: t_Ufj,' C:__E:ai: : 3 t_3-->

- AR L
__/ —

(:E'___:: t__:l._} Q:{ - t_2_ 1

t 0= (t8->t8, t8) ->t 8

CMSC330 Spring 2025

-> t 8

31

Another Example

» Example:
val £ : ((t 8 ->t 8) *t 8) ->t 8
» Step 5:
* Determine type of f t 0=t3->t8
t 3= (t1*t2)
t1l1=¢t7->t8
tl=t2->t7

t 0= ((t 8 ->t8) *t8) ->t 8

CMSC330 Spring 2025 32

Most General Type

» Type inference produces the most general type

let rec map £ 1st =
match 1lst with

[1 -> [1
| hd :: t1 -> £ hd :: (map £ tl)
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

» Functions may have many less general types

val map : (t_1 -> int, [t 1]) -> [int]
val map : (bool -> t 2, [bool]) -> [t 2]
val map : (char -> int, [cChar]) -> [int]

» Less general types are all instances of most general
type, also called the principal type

CMSC330 Spring 2025

33

Complexity of Type Inference Algorithm

» When Hindley/Milner type inference algorithm was
developed, its complexity was unknown

» In 1989, Kanellakis, Mairson, and Mitchell proved that the
problem was exponential-time complete

» Usually linear in practice though...

* Running time is exponential in the depth of polymorphic
declarations

CMSC330 Spring 2025

34

Type Inference: Key Points

» Type inference computes the types of expressions

* Does not require type declarations for variables

* Finds the most general type by solving constraints

* Leads to polymorphism
» Sometimes better error detection than type checking

* Type may indicate a programming error even if no type error
» Some costs

* More difficult to identify program line that causes error

* Natural implementation requires uniform representation sizes
» ldea can be applied to other program properties

* Discover properties of program using same kind of analysis

CMSC330 Spring 2025

35

Example: Swap Two Values

» OCaml
let swap (x, y) =
let temp = !'x in
(x := ly; y := temp)
val swap : 'a ref * 'a ref -> unit = <fun>
» C++

template <typename T>
void swap (T& x, T& y){

T tmp = x; x=y; y=tmp;
}

Declarations both swap two values polymorphically, but they are
compiled very differently

CMSC330 Spring 2025

37

Implementation

» OCam|
* swap is compiled into one function
* Typechecker determines how function can be used
» C++
* swap is compiled differently for each instance
(details beyond scope of this course ...)
» Why the difference?

 OCaml ref cell is passed by pointer. The local x is a pointer to
value on heap, so its size is constant

* C++ arguments passed by reference (pointer), but local x is on
the stack, so its size depends on the type

CMSC330 Spring 2025

38

Polymorphism vs Overloading

» Parametric polymorphism
e Single algorithm may be given many types
* Type variable may be replaced by any type
e f £:t—>t then £f:int—int, £f:bool—bool, ...

» Overloading
* A single symbol may refer to more than one algorithm
* Each algorithm may have different type
* Choice of algorithm determined by type context
* Types of symbol may be arbitrarily different

* In ML, + has types int*int—>int, real*real—real, no
others

* Haskel permits more general overloading and requires user
assistance

CMSC330 Spring 2025

39

Varieties of Polymorphism

» Parametric polymorphism A single piece of code is typed
generically

* Imperative or first-class polymorphism
* ML-style or let-polymorphism
» Ad-hoc polymorphism The same expression exhibit different
behaviors when viewed in different types
* Overloading
* Multi-method dispatch
* intentional polymorphism
» Subtype polymorphism A single term may have many types

using the rule of subsumption allowing to selectively forget
Information

CMSC330 Spring 2025

40

Summary

» Types are important in modern languages
* Program organization and documentation
e Prevent program errors
* Provide important information to compiler

» Type inference

* Determine best type for an expression, based on known
information about symbols in the expression

» Polymorphism
* Single algorithm (function) can have many types

CMSC330 Spring 2025

41

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Type Checking vs Type Inference
	Slide 3: The Type Inference Algorithm
	Slide 4: Why do we want to infer types?
	Slide 5: History
	Slide 6: Type Inference: Basic Idea
	Slide 7: Type Inference: Basic Idea
	Slide 8: Type Inference: Basic Idea
	Slide 9: Type Inference: Basic Idea
	Slide 10: Type Inference: Basic Idea
	Slide 11: Type Inference: Complex Example
	Slide 12: Unification
	Slide 13: Type Inference Algorithm
	Slide 14: Step 1: Parse Program
	Slide 15: Step 2: Assign type variables to nodes
	Slide 16: Step 3: Add Constraints
	Slide 17: Step 4: Solve Constraints
	Slide 18: Step 5: Determine type of declaration
	Slide 19: Constraints from Application Nodes
	Slide 20: Constraints from Abstractions
	Slide 21: Inferring Polymorphic Types
	Slide 22: Inferring Polymorphic Types
	Slide 23: Inferring Polymorphic Types
	Slide 24: Inferring Polymorphic Types
	Slide 25: Inferring Polymorphic Types
	Slide 26: Using Polymorphic Functions
	Slide 27: Recognizing Type Errors
	Slide 28: Another Example
	Slide 29: Another Example
	Slide 30: Another Example
	Slide 31: Another Example
	Slide 32: Another Example
	Slide 33: Most General Type
	Slide 34: Complexity of Type Inference Algorithm
	Slide 35: Type Inference: Key Points
	Slide 37: Example: Swap Two Values
	Slide 38: Implementation
	Slide 39: Polymorphism vs Overloading
	Slide 40: Varieties of Polymorphism
	Slide 41: Summary

