
CMSC 330: Organization of Programming
Languages

Type Checking

1

Implementing an Interpreter

2

let x = 3 in x + 1
Let ("x", false,
 Int 3,
 Binop (Add, ID "x", Int 1))

Parsing

Int 4

Evaluation

4
Pretty Printing

Implementing an Interpreter: type error

3

let x = true in x + 1
Let ("x", false,
 Bool true,
 Binop (Add, ID "x", Int 1))

Parsing

Evaluation
Error

Type Checking

4

let x = 3 in x + 1
Let ("x", false,
 Int 3,
 Binop (Add, ID "x", Int 1))

Parsing

Int 4

Eval

4
Pretty Printing

Int

Type Checking

Type Systems

5

• A type system is a series of rules that ascribe types to expressions
• The rules prove statements e : t
• A mechanism for distinguishing good programs from bad

• Good programs = well typed
• Bad programs = ill-typed or not typable
• Example:

• 0 + 1 // well typed
• false 0 // ill-typed: can’t apply a Boolean
• 1 + (if true then 0 else false) // ill-typed: can’t add boolean to

integer
• The process of applying these rules is called type checking

• Or simply, typing
• Different languages have different type systems

Recall Inference Rules
When defining how evaluation worked, we used this notation:

We used inference rules to define judgment A:e ⇒ v and
translated rules into an interpreter for the MicroOCaml language.
A:e ⇒ v was read in English as “e evaluates to v in an Environment
A

6

A; e1 ⇒ v1 A,x:v1; e2 ⇒ v2

A; let x = e1 in e2 ⇒ v2

Type Checking

Inference rules can also be used to specify a program’s
static semantics, I.e., the rules for type checking
Judgment

is read in English as "e has type t in context G."
We define inference rules for this judgment, just as with the
operational semantics

7

G ⊢ e : t

Typing Contexts
What is the type checking context G?
• G is a (partial) function that maps variable names to types.

G(x) -- look up x's type in G
G,x:t -- extend G so that x maps to t

Example context: x:int, y:bool, z:int
When G is empty, we just write: e:t

8

Typing Contexts and Free Variables
• Intuition:
• If an expression e contains free variables x, y, and z then we

need to supply a context G that contains types for at least x, y
and z. If we don't, we won't be able to type-check e.

 e = Binop (Add,ID "x", Binop(Add,ID "y",ID "z"))

9

ID Type

x Int

y Int

z Int

G:

Type Checking Rules
Goal: Give rules that define the relation "G Ͱ e : t".
• We give one rule for every sort of expression.

10

type expr =
 Int of int
 | Bool of bool
 | ID of var
 | Fun of var * exptype * expr
 | Not of expr
 | Binop of op * expr * expr
 | If of expr * expr * expr
 | App of expr * expr
 | Let of var * bool * expr * expr
 | Record of (label * expr) list
 | Select of label * expr

Type Checking Rules: Booleans
Boolean constants have type bool

Boolean constants b always have type bool, no matter
what the context G is"

11

G⊢ true : bool G⊢ false : bool

Type Checking Rules: Integers

Integers have type Int

Integer constants n always have type Int, no matter what
the context G is"

12

G⊢ n : Int

Type Checking Rules: Binary Operators

Where:
• optype (+, -, *, /) = (Int, Int, Int)
• optype (=, !=) = (‘a, ‘a , Bool)
• optype (<, >, <=, >=) = (int, int, bool)
• optype (&&, ||) = (Bool, Bool, Bool)

e1 op e2 has type t3, if e1 has type t1 ,e2 has type t2 and op is
an operator that takes arguments of type t1 and t2 and returns a
value of type t3

13

G⊢e1: t1, G⊢e2: t2, optype(op)=(t1,t2,t3)
G⊢ e1 op e2: t3

Type Checking Rules: Variables

Variable x has the type given by the context

14

G⊢ x : G(x)

Type Checking Rules: Conditionals

Eq0:

If

If e1 has type bool, and e2 has type t, and e3 has (the same) type
t then if e1 then e2 else e3 has type t

15

G⊢ e : int
G⊢ eq0 e : bool

G⊢ e1 : bool G⊢ e2 : t G⊢ e3 : t
G⊢ if e1 then e2 else e3 : t

Type Checking Rules: Let

If e1 has type t1 and G extended with x:t1 proves e2 has type
t2 then let x = e1 in e2 has type t2

16

G ⊢ e1 : t1 G,x:t1 ⊢ e2 : t2
G ⊢ let x = e1 in e2 : t2

Type Checking Rules: Functions

if G extended with x:t1 proves e has type t2 then fun x→e has
type t1 → t2

17

G,x:t1 ⊢ e : t2
G ⊢ fun x:t1→e:t1→t2

Type Checking Rules: Function Call

If e1 has type t1→t2 and e2 has type t1 then e1 e2 has type
t2

18

G⊢ e1:t1→t2 G⊢e2:t1
G ⊢ e1 e2 :t2

Type Checking Rules: Record

Record:

Select

19

G⊢ e1:t1 … G⊢en:tn
G ⊢ {l1=e1…ln=en}:l1:t1 … ln:tn

G⊢ e1:t1 … G⊢en:tn,
G ⊢{l1=e1 … ln=en}:l1:t1 … ln:tn

G ⊢e:{l1:t1 … ln:tn}
G ⊢ e.li:ti

Typing Derivation
A typing derivation is a "proof" that an expression is well-typed in a
particular context.
Such proofs consist of a tree of valid rules, with no obligations left
unfulfilled at the top of the tree.

20

G,x:int⊢x:int G,x:int⊢2:int

G,x:int⊢x+2:int

G⊢fun x:int→(x+2):int->int

Type Safety
A well-typed program is accepted by the
language’s type system

A program going wrong is one that the language’s
semantics gives no definition (undefined)

Ø If the program were to be run, anything could happen
Ø char buf[4]; buf[4] = ‘x’; // undefined!

A type-safe language is one in which for every
program, well-typed ⟹ well-defined
• Or, Well-typed programs never go wrong, in the words of

Robin Milner in 1978

21

Dynamic Type Checking

The run-time checks performed by dynamic languages
often called dynamic type checking
• These languages may be said to have a dynamic type system

The “type” of an expression checked as needed
• Values keep tag, set when the value is created, indicating its type

(e.g., what class it has)

Disallowed operations cause run-time exception
• Type errors may be latent in code for a long time

24

Quiz 1

When is the type of a variable determined in a dynamically
typed language?

• A. When the program is compiled
• B. At run-time, when the variable is used
• C. At run-time, when that variable is first assigned to
• D. At run-time, when the variable is last assigned to

26

Quiz 1

When is the type of a variable determined in a dynamically
typed language?

• A. When the program is compiled
• B. At run-time, when the variable is used
• C. At run-time, when that variable is first assigned to
• D. At run-time, when the variable is last assigned to

27

Quiz 2

When is the type of a variable determined in a statically
typed language?

• A. When the program is compiled
• B. At run-time, when the variable is used
• C. At run-time, when that variable is first assigned to
• D. At run-time, when the variable is last assigned to

28

Quiz 2

When is the type of a variable determined in a statically
typed language?

• A. When the program is compiled
• B. At run-time, when the variable is used
• C. At run-time, when that variable is first assigned to
• D. At run-time, when the variable is last assigned to

29

Static vs. Dynamic Type Systems

OCaml, Java, Haskell, etc. are statically typed
Ruby, Python, etc. are dynamically typed
But we can view dynamically typed languages as statically
typed in a particular sense:
• Can view all expressions as having a static type Dyn

Ø The language is uni-typed
• All operations are permitted on values of this type

Ø E.g., in Ruby, all objects accept any method call
• But: Some operations result in a run-time exception

Ø Those not supported by the value’s dynamic “type” (tag)
Ø Nevertheless, such behavior is well defined

30

Soundness and Completeness

Type safety is a soundness property
• That a term type checks implies its execution will be well-

defined

Static type systems are rarely complete
• That a term is well-defined does not imply that it will type

check
Ø if true then 0 else 4+"hi"

Dynamic type systems are often complete
• All expressions are well defined and (statically) type check
• 4+"hi" well-defined: it gives a run-time exception

31

Quiz 3

Which of the following is well-defined in OCaml, but is not
well-typed?

• A. let f g = (g 1, g “hello”) in f (fun x -> x)
• B. List.map (fun x -> x + x) [1; “hello”]
• C. let x = 0 in 5 / x
• D. let x = Array.make 1 1 in x.(2)

38

Quiz 3

Which of the following is well-defined in OCaml, but is not
well-typed?

• A. let f g = (g 1, g “hello”) in f (fun x -> x)
• B. List.map (fun x -> x + x) [1; “hello”]
• C. let x = 0 in 5 / x
• D. let x = Array.make 1 1 in x.(2)

Ill-typed and
ill-definedwell-typed and

well-defined
well-typed and
well-defined

Functions as arguments cannot
be used polymorphically

39

Perfect Type System? Impossible

No type system can do all of following
• (1) always terminate, (2) be sound, (3) be complete
• While trying to eliminate all run-time exceptions, e.g.,

Ø Using an int as a function
Ø Accessing an array out of bounds
Ø Dividing by zero, …

Doing so would be undecidable
• by reduction to the halting problem
• Eg., while (…) {…} arr[-1] = 1;

Ø Error tantamount to proving that the while loop terminates

40

Static vs. Dynamic Type Checking

Having carefully stated facts about static checking, can now
consider arguments about which is better:
 static checking or dynamic checking

42

Poll: Which Do You Prefer?

(a) static type systems (e.g., Java, Ocaml)
(b) dynamic type systems (e.g., Ruby, Python)

43

Claim 1: Dynamic is more convenient
Dynamic typing lets you build a heterogeneous list or return a
“number or a string” without workarounds

Ruby: a = [1,1.5]

OCaml:
 type t =
 Int of int
 | Float of float

 let a = [Int 1; Float 1.5];;

44

Claim 1: Static is more convenient
Can assume data has the expected type without cluttering
code with dynamic checks or having errors far from the logical
mistake

def cube(x)
 if x.is_a?(Numeric)

 x * x * x
 else
 "Bad argument”
 end
end

Ruby:

let cube x = x * x * x
(* we know x is int *)

OCaml:

45

Claim 2: Static prevents useful programs
Any sound static type system forbids programs that do nothing
wrong

Ruby:
 if e1 then
 “lady”
 else
 [7,”hi”]
 end

OCaml:
 if e1 then “lady” else (7,”hi”)
 (* does not type-check *)

46

Claim 2: But always workarounds
Rather than suffer time, space, and late-errors costs of
tagging everything, statically typed languages let
programmers “tag as needed” (e.g., with types)

Ruby: Tags everything implicitly (uni-typed)
OCaml: Tag explicitly, as needed (code up unifying type)

type tort = Int of int
 | String of string
 | Cons of tort * tort
 | Fun of (tort -> tort)
 | …

if e1 then
 String "lady"
else
 Cons (Int 7, String "hi")

47

Claim 3: Static catches bugs earlier
Static typing catches many simple bugs as soon as
“compiled”.
• Since such bugs are always caught, no need to test for them.
• In fact, can code less carefully and “lean on” type-checker

def pow (x,y)
 if y == 0 then
 1
 else
 x * pow (y - 1)

 end
end
can’t detect until run

Ruby: OCaml:

let pow x y =
if y = 0 then 1
else x * pow (y-1)

(* does not type-check *)

48

Claim 3: Static catches only easy bugs
But static often catches only “easy” bugs, so you still have to
test your functions, which should find the “easy” bugs too

def pow (x,y)
 if y == 0 then
 1
 else
 x + pow (x,(y-1))
 end
end

Ruby: OCaml:

let pow x y =
if y = 0 then 1
else x + pow x (y-1)

(* oops *)

49

Claim 4: Static typing is faster

Language implementation:
• Does not need to store tags (space, time)
• Does not need to check tags (time)
• Can rely on values being a particular type, so it can perform more

optimizations
Your code:
• Does not need to check arguments and results beyond what is

evidently required

50

Claim 4: Dynamic typing is not too much slower

Language implementation:
• Can use remove some unnecessary tags and tests despite the

lack of types
Ø While difficult (impossible) in general, it is often possible for the

performance-critical parts of a program

Your code:
• Do not need to “code around” type-system limitations with extra

tags, functions etc.

51

Claim 5: Code reuse easier with dynamic
Without a restrictive type system, more code can just be reused with
data of different types

If you use cons cells for everything, libraries that work on cons cells
are useful

Collections libraries are amazingly useful but often have very
complicated static types
• Polymorphism/generics/etc. are hard to understand, but are aiming to provide

what dynamic typing gives naturally

Etc.

52

Claim 5: Code reuse easier with static
The type system serves as “checked documentation,” making the
“contract” with others’ code easier to understand and use correctly

53

Redux: Which Do You Prefer?

(a) static type systems (e.g., Java, Ocaml)
(b) dynamic type systems (e.g., Ruby, Python)

54

Static vs. Dynamic: Age-old Debate
Static vs. dynamic typing is too coarse a question
• Better question: What should we enforce statically?

Ø E.g., OCaml checks array bounds, division-by-zero, at run-time

• Legitimate trade-offs

Idea: Flexible languages allowing best-of-both-worlds?
• Use static types in some parts of the program, but dynamic

checking in other parts?
Ø Called gradual typing: an idea still under active research

• Would programmers use such flexibility well? Who decides?

55

