CMSC 330: Organization of Programming
Languages

Type Checking

CMSC330 Fall 2024

Implementing an Interpreter

letx=3inx+1

Parsing

Pretty Printing

\ 4

Let ("x", false,
Int 3,
Binop (Add, ID "x", Int 1))

Evaluation

A 4

Int 4

Implementing an Interpreter: type error

let x =trueinx+1

Parsing

A 4

Let ("x", false,
Bool true,
Binop (Add, ID "x", Int 1))

Evaluation
Error

v

Type Checking

Parsing

letx=3inx+1

Pretty Printing

A\ 4

Let ("x", false,
Int 3,

Binop (Add, ID "x", Int 1))

Eval

A 4

Int 4

Type Checking

A\ 4

Int

Type Systems

« Atype system is a series of rules that ascribe types to expressions
« Therules prove statements e : t

* A mechanism for distinguishing good programs from bad
« (Good programs = well typed
« Bad programs = ill-typed or not typable
« Example:
« 0+ 1//welltyped
- false O //'ill-typed: can’t apply a Boolean
« 1+ (if true then O else false) // ill-typed: can’t add boolean to
integer
« The process of applying these rules is called type checking
« Or simply, typing
« Different languages have different type systems

Recall Inference Rules

» When defining how evaluation worked, we used this notation:

A el>vl Ax:vl e2> v2

A let x = el in e2 > v2

» We used inference rules to define judgment A:e = v and
translated rules into an interpreter for the MicroOCaml language.

» A:e> v was read in English as “e evaluates to v in an Environment
A

Type Checking

» Inference rules can also be used to specify a program'’s
static semantics, l.e., the rules for type checking

» Judgment
GFe : t

» IS read in English as "e has type t in context G."

» We define inference rules for this judgment, just as with the
operational semantics

Typing Contexts

» What is the type checking context G?
* G is a (partial) function that maps variable names to types.

G(X) -- look up x's type in G
G,X:t -- extend G so that x maps to t

» Example context: x:int, y:bool, z:int
» When G is empty, we just write: e: t

Typing Contexts and Free Variables

Intuition:

* If an expression e contains free variables x, y, and z then we
need to supply a context G that contains types for at least x, y
and z. If we don't, we won't be able to type-check e.

e = Binop (Add,ID "x", Binop(Add,ID "y",ID "z"))

X Int
) Int

z Int

Type Checking Rules

»>

Goal: Give rules that define the relation "G F e : t".

e We give one rule for every sort of expression.
type expr =

Int of int

Bool of bool

ID of var

Fun of var * exptype * expr
Not of expr

Binop of op * expr * expr

If of expr * expr * expr

App of expr * expr

Let of var * bool * expr * expr
Record of (label * expr) 1list
Select of label * expr

10

Type Checking Rules: Booleans

» Boolean constants have type bool

G true : bool G false : bool

» Boolean constants b always have type bool, no matter
what the context G Is"

11

Type Checking Rules: Integers

» Integers have type Int

Gk n: Int

» Integer constants n always have type Int, no matter what
the context G is"

12

Type Checking Rules: Binary Operators

Glel: t1, GFe2: t2, optype(op)=(tl,t2,t3)
G el op e2: t3

» Where:
e optype (+, -, *, /) = (Int, Int, Int)
* optype (=, =) =(‘a, ‘a, Bool)
« optype (<, >, <=, >=) = (int, int, bool)
* optype (&&, ||) = (Bool, Bool, Bool)

» el op e2hastype t3,ifel hastype t1 ,e2 hastype t2 and op IS
an operator that takes arguments of type t1 and t2 and returns a
value of type t3

13

Type Checking Rules: Variables

Rule for variables:

GF x : G(x)

» Variable x has the type given by the context

14

Type Checking Rules: Conditionals

» EQO:
Gk e: int
G eqg0 e : bool

v |f
G el:bool G e2: t G- e3: t
G if el then eZ else e3 : t

» If el has type bool, and e2 has type t, and e3 has (the same) type
tthenif el then e2 else e3 hastypet

15

Type Checking Rules: Let

GFrel: tl Gx:tlle2: t2
GFlet x = el in e2: t2

» If el hastype t1 and G extended with x: t1 proves e2 has type
t2thenlet x = el in e2 hastype t2

16

Type Checking Rules: Functions

G,x:t1l FF e : t2
G F fun x:tl—e:tl—>t2

» If G extended with x: t1 proves e has type t2 then fun x—e has
type t1 — t2

17

Type Checking Rules: Function Call

G el:tl1—>t2 Gle2:tl
G F el e2 :t2

» If el hastype t1—»t2 and e2 hastype tl1thenel e2 hastype
t2

18

Type Checking Rules: Record

» Record:
G e;:t; ... Gle,:t,
G F {l;=e,.1=e}:1,:¢t;, .. 1,:¢,
» Select
G- e;:t; ... GFe,
G F{l,=e;, .. 1 =e }:1;:¢t; .. 1 :t

G Fe:{1,:¢t;, .. 1,:¢t,}

n n

G Fe.l;:t;

19

Typing Derivation

» A typing derivation is a "proof" that an expression is well-typed in a
particular context.

» Such proofs consist of a tree of valid rules, with no obligations left
unfulfilled at the top of the tree.

G,x:intFx:int G,x:intlF2:int

G,x:intFx+2:int

GFfun x:int- (x+2) :int->int

20

Type Safety

» A well-typed program is accepted by the
language’s type system

» A program going wrong is one that the language’s
semantics gives no definition (undefined)

> If the program were to be run, anything could happen
> char buf[4]; buf[4] = X’; // undefined!

» A type-safe language is one in which for every
program, well-typed = well-defined

* Or, Well-typed programs never go wrong, in the words of
Robin Milner in 1978

21

Dynamic Type Checking

» The run-time checks performed by dynamic languages
often called dynamic type checking
* These languages may be said to have a dynamic type system

» The “type” of an expression checked as needed

* Values keep tag, set when the value is created, indicating its type
(e.g., what class it has)

» Disallowed operations cause run-time exception
* Type errors may be latent in code for a long time

24

Quiz 1

» When is the type of a variable determined in a dynamically
typed language”?

. A. When the program is compiled

. B. At run-time, when the variable is used

. C. At run-time, when that variable is first assigned to
. D. At run-time, when the variable is last assigned to

26

Quiz 1

» When is the type of a variable determined in a dynamically
typed language”?

. A. When the program is compiled

. B. At run-time, when the variable is used

. C. At run-time, when that variable is first assigned to
. D. At run-time, when the variable is last assigned to

27

Quiz 2

» When is the type of a variable determined in a statically
typed language”?

. A. When the program is compiled

. B. At run-time, when the variable is used

. C. At run-time, when that variable is first assigned to
. D. At run-time, when the variable is last assigned to

28

Quiz 2

» When is the type of a variable determined in a statically
typed language”?

. A. When the program is compiled

. B. At run-time, when the variable is used

. C. At run-time, when that variable is first assigned to
. D. At run-time, when the variable is last assigned to

29

Static vs. Dynamic Type Systems

» OCaml, Java, Haskell, etc. are statically typed
» Ruby, Python, etc. are dynamically typed

» But we can view dynamically typed languages as statically
typed in a particular sense:

* Can view all expressions as having a static type Dyn
» The language is uni-typed

 All operations are permitted on values of this type
» E.g., in Ruby, all objects accept any method call

* But: Some operations result in a run-time exception

» Those not supported by the value’s dynamic “type” (tag)
» Nevertheless, such behavior is well defined

30

Soundness and Completeness

» Type safety Is a soundness property

* That a term type checks implies its execution will be well-
defined

» Static type systems are rarely complete

* That a term is well-defined does not imply that it will type
check
> if true then 0 else 4+"hi"

» Dynamic type systems are often complete

* All expressions are well defined and (statically) type check
e 4+"hi" well-defined: it gives a run-time exception

31

Quiz 3

» Which of the following is well-defined in OCaml, but is not
well-typed?

. letfg=(g 1, g“hello”)in f (fun x -> X)
List.map (fun x -> x + x) [1; “hello”]

. letx=0in5/x

. letx = Array.make 1 1 in x.(2)

OO0 w >

38

Quiz 3

» Which of the following is well-defined in OCaml, but is not

well-typed?
Functions as arguments cannot
be used polymorphically
. A. letfg=(g 1, g “hello”) in f (fun x -> Xx)
. B. List.map (fun x -> x + x) [1; "hello”] !”-(tjypf_ed jnd
— NG well-typed and Hi-define
- C. letx=0in5/x woll-defined
- D. letx = Array.make 1 1in x.(2) well-typed and

well-defined

39

Perfect Type System? Impossible

» No type system can do all of following
* (1) always terminate, (2) be sound, (3) be complete

* While trying to eliminate all run-time exceptions, e.g.,

» Using an int as a function
» Accessing an array out of bounds
» Dividing by zero, ...

» Doing so would be undecidable

* by reduction to the halting problem
* Eg.,while (..) {..} arr[-1] = 1;
» Error tantamount to proving that the while loop terminates

40

Static vs. Dynamic Type Checking

Having carefully stated facts about static checking, can now
consider arguments about which is better:

static checking or dynamic checking

42

Poll: Which Do You Prefer?

» (@) static type systems (e.g., Java, Ocaml)
» (b) dynamic type systems (e.g., Ruby, Python)

43

Claim 1: Dynamic is more convenient

» Dynamic typing lets you build a heterogeneous list or return a
“number or a string” without workarounds

Ruby : a=[1,1.5]
OCaml:
type t =
Int of int

| Float of float

let a = [Int 1; Float 1.5];;

44

Claim 1: Static Is more convenient

» Can assume data has the expected type without cluttering
code with dynamic checks or having errors far from the logical
mistake

Ruby: OCaml :
def cube (x) let cube x = x * x * x
if x.is a? (Numeric) (* we know x is int ¥)

X * x * x
else
"Bad argument”
end
end

45

Claim 2. Static prevents useful programs

» Any sound static type system forbids programs that do nothing
wrong

Ruby:
if el then
“lady”
else
[7,7hi"]
end

OCaml :
if el then “lady” else (7,”hi”)
(* does not type-check *)

46

Claim 2: But alwa_ys workarounds

» Rather than suffer time, space, and late-errors costs of
tagging everything, statically typed languages let
programmers “tag as needed” (e.g., with types)

Ruby: Tags everything implicitly (uni-typed)
OCaml: Tag explicitly, as needed (code up unifying type)

type tort = Int of int
| String of string
| Cons of tort * tort
| Fun of (tort -> tort)
I

if el then

String "lady"
else

Cons (Int 7, String "hi")

47

Claim 3: Static catches bugs earlier

» Static typing catches many simple bugs as soon as

“compiled”.

* Since such bugs are always caught, no need to test for them.
* In fact, can code less carefully and “lean on” type-checker

Ruby :

def pow (x,y)
if y == 0 then
1
else
x * pow (y - 1)

end
end
can’t detect until run

OCaml :

let pow x y =
if y =0 then 1
else x * pow (y-1)

(* does not type-check *)

48

Claim 3: Static catches only easy bugs

» But static often catches only “easy” bugs, so you still have to
test your functions, which should find the “easy” bugs too

Ruby : OCaml:
def pow (x,y) let pow xy =
if y == 0 then Y= then
1 else x + pow x (y-1)
else N N
x + pow (x,(y-1)) (* ocops *)

end
end

49

Claim 4: Static typing Is faster

» Language implementation:
* Does not need to store tags (space, time)
* Does not need to check tags (time)
e Can rely on values being a particular type, so it can perform more
optimizations
» Your code:

* Does not need to check arguments and results beyond what is
evidently required

50

Claim 4: Dynamic typing Is not too much slower

» Language implementation:

e Can use remove some unnecessary tags and tests despite the
lack of types

» While difficult (impossible) in general, it is often possible for the
performance-critical parts of a program

» Your code:

* Do not need to “code around” type-system limitations with extra
tags, functions etc.

51

Claim 5: Code reuse easier with dynamic

Without a restrictive type system, more code can just be reused with
data of different types

» If you use cons cells for everything, libraries that work on cons cells
are useful

» Collections libraries are amazingly useful but often have very
complicated static types

* Polymorphism/generics/etc. are hard to understand, but are aiming to provide
what dynamic typing gives naturally

» EftC.

52

Claim 5: Code reuse easier with static

The type system serves as “checked documentation,” making the
“contract” with others’ code easier to understand and use correctly

53

Redux: Which Do You Prefer?

» (@) static type systems (e.g., Java, Ocaml)
» (b) dynamic type systems (e.g., Ruby, Python)

54

Static vs. Dynamic: Age-old Debate

» Static vs. dynamic typing is too coarse a question

* Better question: What should we enforce statically?
» E.g., OCaml checks array bounds, division-by-zero, at run-time

* Legitimate trade-offs

» ldea: Flexible languages allowing best-of-both-worlds?

* Use static types in some parts of the program, but dynamic
checking in other parts?
» Called gradual typing: an idea still under active research

* Would programmers use such flexibility well? Who decides?

55

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Implementing an Interpreter
	Slide 3: Implementing an Interpreter: type error
	Slide 4: Type Checking
	Slide 5: Type Systems
	Slide 6: Recall Inference Rules
	Slide 7: Type Checking
	Slide 8: Typing Contexts
	Slide 9: Typing Contexts and Free Variables
	Slide 10: Type Checking Rules
	Slide 11: Type Checking Rules: Booleans
	Slide 12: Type Checking Rules: Integers
	Slide 13: Type Checking Rules: Binary Operators
	Slide 14: Type Checking Rules: Variables
	Slide 15: Type Checking Rules: Conditionals
	Slide 16: Type Checking Rules: Let
	Slide 17: Type Checking Rules: Functions
	Slide 18: Type Checking Rules: Function Call
	Slide 19: Type Checking Rules: Record
	Slide 20: Typing Derivation
	Slide 21: Type Safety
	Slide 24: Dynamic Type Checking
	Slide 26: Quiz 1
	Slide 27: Quiz 1
	Slide 28: Quiz 2
	Slide 29: Quiz 2
	Slide 30: Static vs. Dynamic Type Systems
	Slide 31: Soundness and Completeness
	Slide 38: Quiz 3
	Slide 39: Quiz 3
	Slide 40: Perfect Type System? Impossible
	Slide 42: Static vs. Dynamic Type Checking
	Slide 43: Poll: Which Do You Prefer?
	Slide 44: Claim 1: Dynamic is more convenient
	Slide 45: Claim 1: Static is more convenient
	Slide 46: Claim 2: Static prevents useful programs
	Slide 47: Claim 2: But always workarounds
	Slide 48: Claim 3: Static catches bugs earlier
	Slide 49: Claim 3: Static catches only easy bugs
	Slide 50: Claim 4: Static typing is faster
	Slide 51: Claim 4: Dynamic typing is not too much slower
	Slide 52: Claim 5: Code reuse easier with dynamic
	Slide 53: Claim 5: Code reuse easier with static
	Slide 54: Redux: Which Do You Prefer?
	Slide 55: Static vs. Dynamic: Age-old Debate

