
For all terminals, use function match_tok a
• If lookahead is a it consumes the lookahead by advancing the

lookahead to the next token, and returns
• Fails with a parse error if lookahead is not a

For each nonterminal N, create a function parse_N
• Called when we’re trying to parse a part of the input which

corresponds to (or can be derived from) N
• parse_S for the start symbol S begins the parse

CMSC 330 Sping 2024 19

Recursive Descent Parser Implementation

Given grammar S → xyz | abc
Parser
let parse_S () =
 if lookahead () = "x" then (* S → xyz *)
 (match_tok "x";
 match_tok "y";
 match_tok "z")

else if lookahead () = "a" then (* S → abc *)
 (match_tok "a";
 match_tok "b";
 match_tok "c")
else raise (ParseError "parse_S")

CMSC 330 Sping 2024 20

Example Parser

Given grammar S → A | B A → x | y B → z

CMSC 330 Sping 2024 21

Another Example Parser

let rec parse_S () =
 if lookahead () = "x" ||
 lookahead () = "y" then
 parse_A () (* S → A *)
 else if lookahead () = "z" then
 parse_B () (* S → B *)
 else raise (ParseError "parse_S")

and parse_A () =
 if lookahead () = "x" then
 match_tok "x" (* A → x *)
 else if lookahead () = "y" then
 match_tok "y" (* A → y *)
 else raise (ParseError "parse_A")
and parse_B () = …

If you draw the execution trace of the parser
• You get the parse tree

Examples
• Grammar

S → xyz
S → abc

• String “xyz”
parse_S ()
 match_tok “x”
 match_tok “y”
 match_tok “z”

CMSC 330 Sping 2024 22

Execution Trace = Parse Tree

S
 /|\
x y z

S
|
A
|
x

• Grammar
S → A | B
A → x | y
B → z

• String “x”
parse_S ()
 parse_A ()
 match_tok
“x”

Consider grammar S → Sa | ε
• Try writing parser

• Body of parse_S () has an infinite loop!
Ø Infinite loop occurs in grammar with left recursion

CMSC 330 Sping 2024 23

Left Recursion

let rec parse_S () =
if lookahead () = “a” then
 (parse_S ();
 match_tok “a”) (* S → Sa *)
else ()

Consider grammar S → aS | ε Again, First(aS) = a

• Try writing parser

• Will parse_S() infinite loop?
Ø Invoking match_tok will advance lookahead, eventually stop

• Top-down parsers handles grammar w/ right recursion

CMSC 330 Sping 2024 24

Right Recursion

let rec parse_S () =
if lookahead () = “a” then
 (match_tok “a”;
 parse_S ()) (* S → aS *)
else ()

Given grammar
• A → Aα1 | Aα2 | … | Aαn | β

Ø β must exist or no derivation will yield a string

Rewrite grammar as (repeat as needed)
• A → βL
• L → α1L | α2 L | … | αn L | ε

Replaces left recursion with right recursion
Examples
• S → Sa | ε ⇨ S → L L → aL | ε
• S → Sa | Sb | c ⇨ S → cL L → aL | bL | ε

CMSC 330 Sping 2024 25

Algorithm To Eliminate Left Recursion

Quiz 4
What does the following code parse?

CMSC 330 Sping 2024 26

let parse_S () =
 if lookahead () = “a” then
 (match_tok "a";
 match_tok "x";
 match_tok "y”;
 match_tok "q”)
 else
 raise (ParseError "parse_S")

A. S → axyq
B. S → a | q
C. S → aaxy | qq
D. S → axy | q

Quiz 4
What does the following code parse?

CMSC 330 Sping 2024 27

let parse_S () =
 if lookahead () = “a” then
 (match_tok "a";
 match_tok "x";
 match_tok "y”;
 match_tok "q”)
 else
 raise (ParseError "parse_S")

A. S → axyq
B. S → a | q
C. S → aaxy | qq
D. S → axy | q

Quiz 5

What Does the following code parse?

CMSC 330 Sping 2024 28

A. S → aS | qp
B. S → a | S | qp
C. S → aqSp
D. S → a | q

let rec parse_S () =
 if lookahead () = “a” then
 (match_tok "a";
 parse_S ())
 else if lookahead () = “q” then
 (match_tok "q”;
 match_tok ”p”)
 else
 raise (ParseError "parse_S")

Quiz 5
What Does the following code parse?

CMSC 330 Sping 2024 29

A. S → aS | qp
B. S → a | S | qp
C. S → aqSp
D. S → a | q

let rec parse_S () =
 if lookahead () = “a” then
 (match_tok "a";
 parse_S ())
 else if lookahead () = “q” then
 (match_tok "q”;
 match_tok ”p”)
 else
 raise (ParseError "parse_S")

Can recursive descent parse this grammar?

CMSC 330 Sping 2024 30

Quiz 6

A. Yes
B. No

S → aBa
B → bC
C → ε | Cc

Can recursive descent parse this grammar?

CMSC 330 Sping 2024 31

Quiz 6

A. Yes
B. No

(due to left recursion)

S → aBa
B → bC
C → ε | Cc

CMSC 330 Sping 2024 32

Recall: The Compilation Process

Where does this come from?

Parse trees are a representation of a parse, with all of the
syntactic elements present
• Parentheses
• Extra nonterminals for precedence

This extra stuff is needed for parsing

Lots of that stuff is not needed to actually implement a
compiler or interpreter
• So in the abstract syntax tree we get rid of it

CMSC 330 Sping 2024 33

Parse Trees to ASTs

An abstract syntax tree is a more compact, abstract
representation of a parse tree, with only the essential
parts

CMSC 330 Sping 2024 34

Abstract Syntax Trees (ASTs)

parse
tree AST

