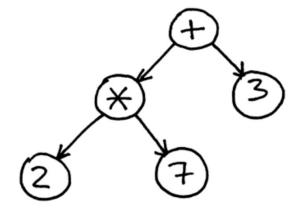
CMSC 330: Organization of Programming Languages

Context Free Grammars

Interpreters

- Tokenizer (Scanner / lexer):
 - converts program source into tokens (keywords, variable names, operators, numbers, etc.) using regular expressions
 - "2*7+3" ⇒ [Num 2; Mul; Num 7; Plus; Num 3]
- Parser
 - recognize strings defined as context free grammars
 - converts tokens into an Abstract Syntax Tree (AST)
- Evaluator
 - Runs the program



Context-Free Grammar (CFG)

- A way of describing sets of strings (= languages)
 - The notation L(G) denotes the language of strings defined by grammar G
- Example grammar G is S → 0S | 1S | ε which says that string s' ∈ L(G) iff
 - s' = ε , or \exists s ε L(G) such that s' = 0s, or s' = 1s
- Grammar is same as regular expression (0|1)*

CFGs Are Expressive

▶ CFGs subsume REs, DFAs, NFAs

- And CFGs can define languages regexps cannot
 - S \rightarrow (S) | ϵ // represents balanced pairs of ()'s

 As a result, CFGs often used as the basis of parsers for programming languages

Parsing with CFGs

- CFGs formally define languages, but they do not define an algorithm for accepting strings
- Several styles of algorithm; each works only for less expressive forms of CFG
 - LL(k) parsing
 We will discuss this next lecture
 - LR(k) parsing
 - LALR(k) parsing
 - SLR(k) parsing
- Tools exist for building parsers from grammars
 - JavaCC, Yacc, etc.

Formal Definition: Context-Free Grammar

- A CFG G is a 4-tuple (Σ, N, P, S)
 - Σ alphabet (finite set of symbols, or terminals)
 - > Often written in lowercase
 - N a finite, nonempty set of nonterminal symbols
 - > Often written in UPPERCASE
 - \triangleright It must be that N $\cap \Sigma = \emptyset$
 - P a set of productions of the form $N \to (\Sigma | N)^*$
 - Informally: the nonterminal can be replaced by the string of zero or more terminals / nonterminals to the right of the →
 - > Can think of productions as rewriting rules (more later)
 - S ϵ N the start symbol

Notational Shortcuts

```
S \rightarrow aAb

A \rightarrow aA \mid b \mid \epsilon
```

- A production is of the form
 - left-hand side (LHS) → right hand side (RHS)
- If not specified
 - Assume LHS of first production is the start symbol
- Productions with the same LHS
 - Are usually combined with
- If a production has an empty RHS
 - It means the RHS is ε

CMSC 330 Spring 2024

Aside: Backus-Naur Form

- Context-free grammar production rules are also called Backus-Naur Form or BNF
 - Designed by John Backus and Peter Naur
 - Chair and Secretary of the Algol committee in the early 1960s. Used this notation to describe Algol in 1962

A production is written in BNF as

$$A \rightarrow B c D$$

Java Syntax Specification

Programs

```
<compilation unit> ::= <package declaration>? <import declarations>? <type declarations>?
<type declaration> ::= <class declaration> | <interface declaration> | ;
<class declaration> ::= <class modifiers>? class <identifier> <super>? <interfaces>?
<class body>
<class modifier> ::= public | abstract | final
<super> ::= extends <class type>
<interfaces> ::= implements <interface type list>
<if then else statement>::= if ( <expression> ) <statement no short if> else <statement>
<while statement> ::= while ( <expression> ) <statement>
<for statement> ::= for ( <for init>? ; <expression>? ; <for update>? ) <statement>
```

Generating Strings

- Think of a grammar as generating strings by rewriting
 - Beginning with the start symbol, repeatedly rewrite a nonterminal per a production in the grammar (replace LHS with RHS)
- Example grammar G

```
S \rightarrow 0S \mid 1S \mid \epsilon
```

Generate string 011 from G as follows:

```
S \Rightarrow 0S // using S \rightarrow 0S

\Rightarrow 01S // using S \rightarrow 1S

\Rightarrow 011S // using S \rightarrow 1S

\Rightarrow 011 // using S \rightarrow \epsilon
```

Accepting Strings (Informally)

- Checking if s ∈ L(G) is called acceptance
 - Algorithm: Find a rewriting from G's start symbol that yields s
 > 011 ∈ L(G) according to the previous rewriting
- Terminology
 - Such a sequence of rewrites is a derivation or parse
 - Discovering the derivation is called parsing

CMSC 330 Spring 2024

Derivations

- Notation
 - ⇒ indicates a derivation of one step
 - ⇒ indicates a derivation of one or more steps
 - ⇒* indicates a derivation of zero or more steps
- Example
 - $S \rightarrow 0S \mid 1S \mid \epsilon$
- For the string 010
 - $S \Rightarrow 0S \Rightarrow 01S \Rightarrow 010S \Rightarrow 010$
 - S ⇒ + 010
 - 010 ⇒* 010

CMSC 330 Spring 2024

Language Generated by Grammar

▶ L(G) the language defined by G is

$$L(G) = \{ s \in \Sigma^* \mid S \Rightarrow^+ s \}$$

- S is the start symbol of the grammar
- Σ is the alphabet for that grammar
- In other words

 All strings over Σ that can be derived from the start symbol via one or more productions

Consider the grammar

```
S \rightarrow bS \mid T

T \rightarrow aT \mid U

U \rightarrow cU \mid \epsilon
```

Which of the following strings is generated by this grammar?

A. aba

B. bab

C. accc

D. ca

Consider the grammar

```
S \rightarrow bS \mid T

T \rightarrow aT \mid U

U \rightarrow cU \mid \epsilon
```

Which of the following strings is generated by this grammar?

A. aba

B. bab

C. accc

D. ca

Consider the grammar

$$S \rightarrow bS \mid T$$

 $T \rightarrow aT \mid U$
 $U \rightarrow cU \mid \epsilon$

Which of the following is a derivation of the string aac?

A. $S \Rightarrow T \Rightarrow aT \Rightarrow aTaT \Rightarrow aaT \Rightarrow aacU \Rightarrow aacU$

B. $S \Rightarrow T \Rightarrow aT \Rightarrow aaU \Rightarrow aacU \Rightarrow$

 $C. S \Rightarrow T \Rightarrow U \Rightarrow aU \Rightarrow aaU \Rightarrow aacU \Rightarrow aa$

 $D. S \Rightarrow aT \Rightarrow aaT \Rightarrow aaU \Rightarrow aacU \Rightarrow aac$

Consider the grammar

$$S \rightarrow bS \mid T$$

 $T \rightarrow aT \mid U$
 $U \rightarrow cU \mid \epsilon$

Which of the following is a derivation of the string aac?

A.
$$S \Rightarrow T \Rightarrow aT \Rightarrow aTaT \Rightarrow aaT \Rightarrow aacU \Rightarrow aacU$$

$$B.S \Rightarrow T \Rightarrow aT \Rightarrow aaT \Rightarrow aaU \Rightarrow aacU \Rightarrow aacU$$

$$C. S \Rightarrow T \Rightarrow U \Rightarrow aU \Rightarrow aaU \Rightarrow aacU \Rightarrow aa$$

$$D. S \Rightarrow aT \Rightarrow aaT \Rightarrow aaU \Rightarrow aacU \Rightarrow aacU$$

Consider the grammar

```
S \rightarrow aS \mid T

T \rightarrow bT \mid U

U \rightarrow cU \mid \epsilon
```

Which of the following regular expressions accepts the same language as this grammar?

- A. (a|b|c)*
- B. a*b*c*
- C. (a|ab|abc)*
- D. abc*

Consider the grammar

```
S \rightarrow aS \mid T

T \rightarrow bT \mid U

U \rightarrow cU \mid \epsilon
```

Which of the following regular expressions accepts the same language as this grammar?

- A. (a|b|c)*
- **B.** a*b*c*
- C. (a|ab|abc)*
- D. abc*

Designing Grammars

Use recursive productions to generate an arbitrary number of symbols

```
A \rightarrow xA \mid \epsilon // Zero or more x's 
 A \rightarrow yA \mid y // One or more y's
```

2. Use separate non-terminals to generate disjoint parts of a language, and then combine in a production

Designing Grammars

To generate languages with matching, balanced, or related numbers of symbols, write productions which generate strings from the middle

```
\{a^nb^n \mid n \ge 0\} // N a's followed by N b's S \to aSb \mid \epsilon Example derivation: S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb \{a^nb^{2n} \mid n \ge 0\} // N a's followed by 2N b's S \to aSbb \mid \epsilon Example derivation: S \Rightarrow aSbb \Rightarrow aaSbbbb \Rightarrow aabbbb
```

Designing Grammars

4. For a language that is the union of other languages, use separate nonterminals for each part of the union and then combine

```
\{a^n(b^m|c^m) \mid m > n \ge 0\}

Can be rewritten as

\{a^nb^m \mid m > n \ge 0\} \cup \{a^nc^m \mid m > n \ge 0\}

S \to T \mid V

T \to aTb \mid U

U \to Ub \mid b

V \to aVc \mid W

W \to Wc \mid c
```

Practice

Try to make a grammar which accepts

```
• 0^*|1^* • 0^n1^n where n \ge 0 S \to A \mid B A \to 0A \mid \epsilon B \to 1B \mid \epsilon
```

Give some example strings from this language

```
• S → 0 | 1S

> 0, 10, 110, 1110, 11110, ...
```

What language is it, as a regexp?

> 1*0

Which of the following grammars describes the same language as 0^{n1m} where $m \le n$?

- A. $S \rightarrow 0S1 \mid \epsilon$
- B. $S \rightarrow 0S1 \mid S1 \mid \epsilon$
- C. $S \rightarrow 0S1 \mid 0S \mid \epsilon$
- D. $S \rightarrow SS \mid 0 \mid 1 \mid \epsilon$

Which of the following grammars describes the same language as 0^{n1m} where $m \le n$?

- A. $S \rightarrow 0S1 \mid \epsilon$
- B. $S \rightarrow 0S1 \mid S1 \mid \epsilon$
- C. $S \rightarrow 0S1 \mid 0S \mid \epsilon$
- D. $S \rightarrow SS \mid 0 \mid 1 \mid \epsilon$

same number of 0 and 1

more 1's

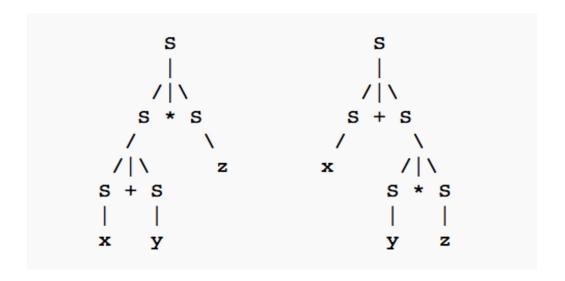
more 0's

no control of the number

Parse Trees

Parse tree shows how a string is produced by a grammar

$$S \rightarrow S^*S \mid S+S \mid x \mid y \mid z$$



S

$$S \rightarrow aS \mid T$$
$$T \rightarrow bT \mid U$$
$$U \rightarrow cU \mid \epsilon$$

CMSC 330 Spring 2024 27

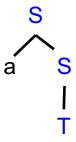
S

$$S \Rightarrow aS$$

$$S \rightarrow aS \mid T$$
$$T \rightarrow bT \mid U$$
$$U \rightarrow cU \mid \epsilon$$

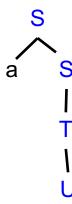
$$S \Rightarrow aS \Rightarrow aT$$

$$\begin{array}{l} S \rightarrow aS \mid T \\ T \rightarrow bT \mid U \\ U \rightarrow cU \mid \epsilon \end{array}$$



$$S \Rightarrow aS \Rightarrow aT \Rightarrow aU$$

$$S \rightarrow aS \mid T$$
$$T \rightarrow bT \mid U$$
$$U \rightarrow cU \mid \epsilon$$

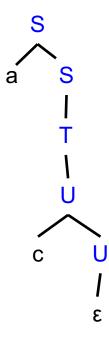


$$S \Rightarrow aS \Rightarrow aT \Rightarrow aU \Rightarrow acU$$

$$S \rightarrow aS \mid T$$
$$T \rightarrow bT \mid U$$
$$U \rightarrow cU \mid \epsilon$$

$$S \Rightarrow aS \Rightarrow aT \Rightarrow aU \Rightarrow acU \Rightarrow ac$$

$$\begin{array}{l} S \rightarrow aS \mid T \\ T \rightarrow bT \mid U \\ U \rightarrow cU \mid \epsilon \end{array}$$



Arithmetic Expressions

- \rightarrow E \rightarrow a | b | c | E+E | E-E | E*E | (E)
- This describes (or generates) a set of strings
 - {a, b, c, a+b, a+a, a*c, a-(b*a), c*(b + a), ...}
- Example strings not in the language
 - d, c(a), a+, b**c, etc.

CFGs and ASTs

- An abstract syntax tree is a data structure that represents a parsed input, e.g., a program expression
 - An AST can be expressed with an OCaml datatype that is very close to the CFG that describes the language syntax

CFG for arithmetic expressions:

AST:

```
type expr = A | B | C | D
    | Plus of expr * expr
    | Minus of expr * expr
    | Mult of expr * expr
```

Eventual Goal: Parse a CFG to get an AST

AST definition (OCaml):

```
type expr = A | B | C | D
    | Plus of expr * expr
    | Minus of expr * expr
    | Mult of expr * expr
```

```
a-c parses to
a-(b*a) parses to
c*(b+d) parses to
```

```
Minus (A, C)
Minus (A, Mult (B,A))
Mult (C, Plus (B,D))
```

Parse Trees for Expressions

A parse tree shows the structure of an expression as it corresponds to a grammar

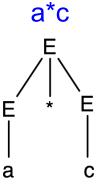
$$E \rightarrow a \mid b \mid c \mid d \mid E+E \mid E-E \mid E*E \mid (E)$$

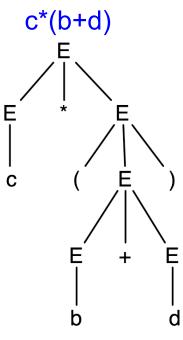
$$a \qquad a*c \qquad c*(b+d)$$

Parse Trees for Expressions

A parse tree shows the structure of an expression as it corresponds to a grammar

$$E \rightarrow a \mid b \mid c \mid d \mid E+E \mid E-E \mid E*E \mid (E)$$

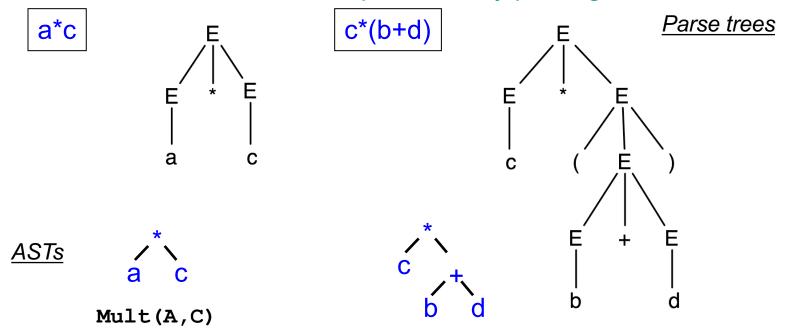




CMSC 330 Spring 2024

Abstract Syntax Trees

- A parse tree and an AST are not the same thing
 - The latter is a data structure produced by parsing



Mult(C,Plus(B,D))

Practice

$$E \rightarrow a \mid b \mid c \mid d \mid E+E \mid E-E \mid E*E \mid (E)$$

Make a parse tree for...

- a*b
- a+(b-c)
- · d*(d+b)-a
- (a+b)*(c-d)
- a+(b-c)*d

Leftmost and Rightmost Derivation

- Leftmost derivation
 - Leftmost nonterminal is replaced in each step
- Rightmost derivation
 - Rightmost nonterminal is replaced in each step

Grammar

$$S \rightarrow AB$$

$$A \rightarrow a$$

$$B \rightarrow b$$

Leftmost derivation for "ab"

$$S \Rightarrow AB \Rightarrow aB \Rightarrow ab$$

Rightmost derivation for "ab"

$$S \Rightarrow AB \Rightarrow Ab \Rightarrow ab$$

Parse Tree For Derivations

 $S \Rightarrow SbS \Rightarrow Sba \Rightarrow aba$

Parse tree may be same for both leftmost & rightmost derivations

Example Grammar: S → a | SbS | String: aba
 Leftmost Derivation
 S ⇒ SbS ⇒ abS ⇒ aba
 Rightmost Derivation

- Parse trees don't show order productions are applied
- Every parse tree has a unique leftmost and a unique rightmost derivation

Parse Tree For Derivations (cont.)

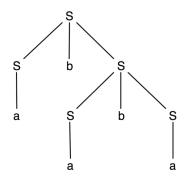
- Not every string has a unique parse tree
 - Example Grammar: S → a | SbS String: ababa

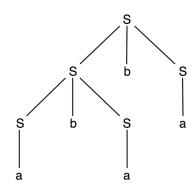
Leftmost Derivation

$$S \Rightarrow SbS \Rightarrow abS \Rightarrow abSbS \Rightarrow ababS \Rightarrow ababa$$

Another Leftmost Derivation

$$S \Rightarrow SbS \Rightarrow SbSbS \Rightarrow abSbS \Rightarrow ababS \Rightarrow ababa$$





Ambiguity

 A grammar is ambiguous if a string may have multiple leftmost derivations

I saw a girl with a telescope.

CFGs for Programming Languages

Recall that our goal is to describe programming languages with CFGs

 We had the following example which describes limited arithmetic expressions

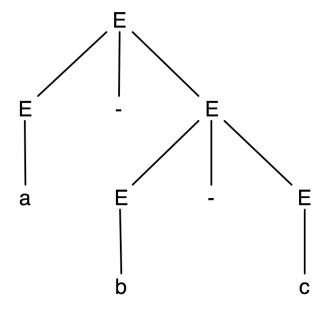
```
E \rightarrow a | b | c | E+E | E-E | E*E | (E)
```

- What's wrong with using this grammar?
 - It's ambiguous!

Example: a-b-c

$$E \Rightarrow E-E \Rightarrow a-E \Rightarrow a-E-E \Rightarrow$$

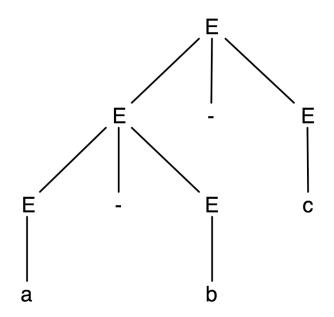
a-b-E \Rightarrow a-b-c



Corresponds to a-(b-c)

$$E \Rightarrow E-E \Rightarrow E-E-E \Rightarrow$$

a-E-E \Rightarrow a-b-E \Rightarrow a-b-c

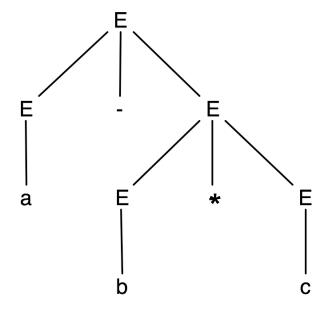


Corresponds to (a-b)-c

Example: a-b*c

$$E \Rightarrow E-E \Rightarrow a-E \Rightarrow a-E*E \Rightarrow$$

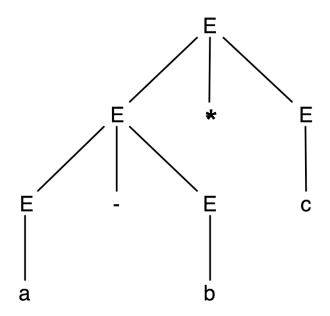
 $a-b*E \Rightarrow a-b*c$



Corresponds to a-(b*c)

$$E \Rightarrow E-E \Rightarrow E-E*E \Rightarrow$$

 $a-E*E \Rightarrow a-b*E \Rightarrow a-b*c$



Corresponds to (a-b)*c

Another Example: If-Then-Else

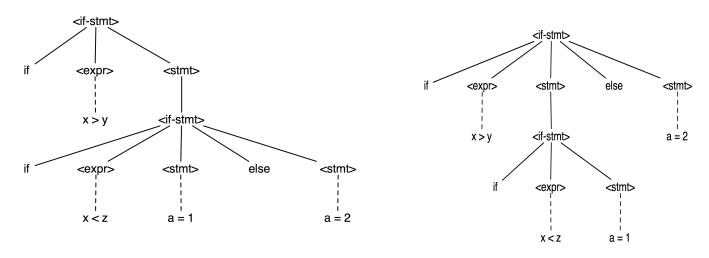
Aka the dangling else problem

Consider the following program fragment

```
if (x > y)
  if (x < z)
    a = 1;
  else a = 2;
(Note: Ignore newlines)</pre>
```

Two Parse Trees

```
if (x > y)
    if (x < z)
        a = 1;
    else a = 2;</pre>
```



Quiz #5

Which of the following grammars is ambiguous?

- A. $S \rightarrow 0SS1 \mid 0S1 \mid \epsilon$
- B. $S \rightarrow A1S1A \mid \epsilon$
 - $A \rightarrow 0$
- C. $S \to (S, S, S) | 1$
- D. None of the above.

Quiz #5

Which of the following grammars is ambiguous?

- A. $S \rightarrow 0SS1 \mid 0S1 \mid \epsilon$
- B. $S \rightarrow A1S1A \mid \epsilon$
 - $A \rightarrow 0$
- C. $S \to (S, S, S) | 1$
- D. None of the above.

 $S \rightarrow 0SS1 \rightarrow 0S1 \rightarrow 01$ $S \rightarrow 0S1 \rightarrow 01$

Dealing With Ambiguous Grammars

Ambiguity is bad

Syntax is correct, but semantics differ depending on choice

```
    Different associativity (a-b)-c vs. a-(b-c)
    Different precedence (a-b)*c vs. a-(b*c)
```

> Different control flow if (if else) vs. if (if) else

Two approaches

- Rewrite grammar
 - Grammars are not unique can have multiple grammars for the same language. But result in different parses.
- Use special parsing rules
 - Depending on parsing tool

Fixing the Expression Grammar

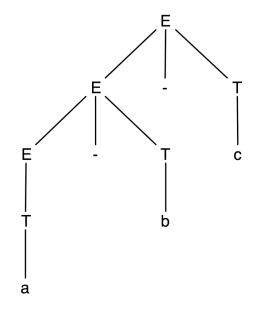
Require right operand to not be bare expression

$$E \rightarrow E+T \mid E-T \mid E*T \mid T$$

T \rightarrow a \left| b \left| c \right| (E)

Corresponds to left associativity

- Now only one parse tree for a-b-c
 - Find derivation



What if we want Right Associativity?

- Left-recursive productions
 - Used for left-associative operators
 - Example

$$E \rightarrow E+T \mid E-T \mid E*T \mid T$$

T \rightarrow a \left| b \left| c \left| (E)

- Right-recursive productions
 - Used for right-associative operators
 - Example

$$E \rightarrow T+E \mid T-E \mid T*E \mid T$$

T \rightarrow a \left| b \left| c \left| (E)

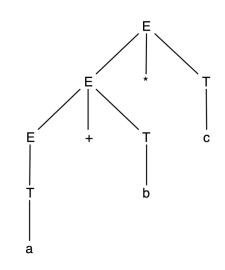
A Different Problem

▶ How about the string a+b*c?

$$E \rightarrow E+T \mid E-T \mid E*T \mid T$$

T \rightarrow a \left| b \left| c \right| (E)

Doesn't have correct precedence for *



 When a nonterminal has productions for several operators, they effectively have the same precedence

Solution – Introduce new nonterminals

Final Expression Grammar

```
E \rightarrow E+T \mid E-T \mid T lowest precedence operators

T \rightarrow T^*P \mid P higher precedence

P \rightarrow a \mid b \mid c \mid (E) highest precedence (parentheses)
```

Derivation of a+b*c:

$$E \rightarrow E+T \rightarrow T+T \rightarrow P+T \rightarrow a+T \rightarrow a+T*P \rightarrow a+P*P \rightarrow a+b*P \rightarrow a+b*c$$

Fixing the Expression Grammar

- Controlling precedence of operators
 - Introduce new nonterminals
 - Precedence increases closer to operands
- Controlling associativity of operators
 - Introduce new nonterminals
 - Assign associativity based on production form
 - E → E+T (left associative) vs. E → T+E (right associative)
 - But parsing method might limit form of rules

Conclusion

- Context Free Grammars (CFGs) can describe programming language syntax
 - They are a kind of formal language that is more powerful than regular expressions
- CFGs can also be used as the basis for programming language parsers (details later)
 - But the grammar should not be ambiguous
 - > May need to change more natural grammar to make it so
 - Parsing often aims to produce abstract syntax trees
 - > Data structure that records the key elements of program