CMSC 330: Organization of Programming Languages

DFAs, and NFAs, and Regexps

CMSC330 Spring 2025

The story so far, and what's next

- Goal: Develop an algorithm that determines whether a string s is matched by regex R
 - I.e., whether s is a member of R's language
- Approach to come: Convert *R* to a finite automaton *FA* and see whether s is accepted by *FA*
 - Details: Convert *R* to a *nondeterministic FA* (NFA), which we then convert to a *deterministic FA* (DFA),
 - > which enjoys a fast acceptance algorithm

Two Types of Finite Automata

- Deterministic Finite Automata (DFA)
 - Exactly one sequence of steps for each string
 - > Easy to implement acceptance check
 - (Almost) all examples so far
- Nondeterministic Finite Automata (NFA)
 - May have many sequences of steps for each string
 - Accepts if any path ends in final state at end of string
 - More compact than DFA
 - > But more expensive to test whether a string matches

Comparing DFAs and NFAs

NFAs can have more than one transition leaving a state on the same symbol

- DFAs allow only one transition per symbol
 - DFA is a special case of NFA

Comparing DFAs and NFAs (cont.)

- NFAs may have transitions with empty string label
 - May move to new state without consuming character

ϵ -transition

- DFA transition must be labeled with symbol
 - A DFA is a specific kind of NFA

DFA for (a|b)*abb

NFA for (a|b)*abb

- ▶ ba
 - Has paths to either S0 or S1
 - Neither is final, so rejected
- ▶ babaabb
 - Has paths to different states
 - One path leads to S3, so accepts string

NFA for (ab|aba)*

- ▶ aba
- ▶ ababa
 - Has paths to states S0, S1
 - Need to use ε-transition

NFA and DFA for (ab|aba)*

Quiz 1: Which string is NOT accepted by this NFA?

Quiz 1: Which string is NOT accepted by this NFA?

Formal Definition

- A deterministic finite automaton (DFA) is a
 - 5-tuple (Σ , Q, q₀, F, δ) where
 - Σ is an alphabet
 - Q is a nonempty set of states
 - $q_0 \in Q$ is the start state
 - $F \subseteq Q$ is the set of final states
 - $\delta: Q \times \Sigma \to Q$ specifies the DFA's transitions
 - > What's this definition saying that δ is?
- A DFA accepts s if it stops at a final state on s

Formal Definition: Example

- $\Sigma = \{0, 1\}$
- $Q = \{S0, S1\}$
- $q_0 = S0$
- $F = {S1}$

• δ =

or as { (S0,0,S0), (S0,1,S1), (S1,0,S0), (S1,1,S1) }

Implementing DFAs (one-off)

}

It's easy to build a program which mimics a DFA


```
cur state = 0;
while (1) {
  symbol = getchar();
  switch (cur state) {
    case 0: switch (symbol) {
              case '0': cur state = 0; break;
              case '1': cur state = 1; break;
              case '\n': printf("rejected\n"); return 0;
                         printf("rejected\n"); return 0;
              default:
           break;
    case 1: switch (symbol) {
              case '0': cur state = 0; break;
              case '1': cur state = 1; break;
              case '\n': printf("accepted\n"); return 1;
              default:
                         printf("rejected\n"); return 0;
            break;
   default: printf("unknown state; I'm confused\n");
            break;
```

Implementing DFAs (generic)

More generally, use generic table-driven DFA

```
given components (\Sigma, Q, q<sub>0</sub>, F, \delta) of a DFA:
let q = q<sub>0</sub>
while (there exists another symbol \sigma of the input string)
q := \delta(q, \sigma);
if q \in F then
accept
else reject
```

- q is just an integer
- Represent δ using arrays or hash tables
- Represent F as a set

Nondeterministic Finite Automata (NFA)

- An *NFA* is a 5-tuple (Σ , Q, q₀, F, δ) where
 - Σ, Q, q0, F as with DFAs
 - $\delta \subseteq Q \ge (\Sigma \cup \{\epsilon\}) \ge Q$ specifies the NFA's transitions

An NFA accepts s if there is at least one path via s from the NFA's start state to a final state

CMSC330 Spring 2025

NFA Acceptance Algorithm (Sketch)

- When NFA processes a string s
 - NFA must keep track of several "current states"
 - \succ Due to multiple transitions with same label, and $\epsilon\text{-transitions}$
 - If any current state is final when done then accept s
- Example
 - After processing "a"

S1

S2

S3

» NFA may be in states

a

S2

- Since S3 is final, s is accepted
- Algorithm is slow, space-inefficient; prefer DFAs!

Relating REs to DFAs and NFAs

Regular expressions, NFAs, and DFAs accept the same languages! Can convert between them

Reducing Regular Expressions to NFAs

- Goal: Given regular expression A, construct NFA: <A> = (Σ, Q, q₀, F, δ)
 - Remember regular expressions are defined recursively from primitive RE languages
 - Invariant: |F| = 1 in our NFAs
 - Recall F = set of final states
- Will define <A> for base cases: σ , ϵ , \emptyset
 - Where σ is a symbol in Σ
- And for inductive cases: AB, A|B, A*

Reducing Regular Expressions to NFAs

Base case: σ

Recall: NFA is $(\Sigma, Q, q_0, F, \delta)$ where Σ is the alphabet Q is set of states q_0 is starting state F is set of final states δ is transition relation

```
<\!\!\sigma\!\!> = (\{\sigma\}, \{S0, S1\}, S0, \{S1\}, \{(S0, \sigma, S1)\})
(\Sigma, Q, q_0, F, \delta)
```

Reduction

Base case: ε

 $<\epsilon> = (\emptyset, \{S0\}, S0, \{S0\}, \emptyset)$

Recall: NFA is $(\Sigma, Q, q_0, F, \delta)$ where Σ is the alphabet Q is set of states q_0 is starting state F is set of final states δ is transition relation

 $\langle \emptyset \rangle = (\emptyset, \{S0, S1\}, S0, \{S1\}, \emptyset)$

Reduction: Concatenation

Induction: AB

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $<\!B\!> = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$

Reduction: Concatenation

Induction: AB

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $<\!B\!> = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
- $\langle AB \rangle = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_A, \{f_B\}, \delta_A \cup \delta_B \cup \{(f_A, \epsilon, q_B)\})$

Reduction: Union

► Induction: A|B

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $<\!B\!> = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$

Reduction: Union

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $<\!B\!> = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
- $\langle A | B \rangle = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B \cup \{S0,S1\}, S0, \{S1\}, \delta_A \cup \delta_B \cup \{(S0,\epsilon,q_A), (S0,\epsilon,q_B), (f_A,\epsilon,S1), (f_B,\epsilon,S1)\})$

Reduction: Closure

► Induction: A*

•
$$<\!A\!> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$$

Reduction: Closure

Induction: A*

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $<A^*> = (\Sigma_A, Q_A \cup \{S0, S1\}, S0, \{S1\},$

 $\delta_{A} \cup \{(f_{A},\epsilon,S1),\,(S0,\epsilon,q_{A}),\,(S0,\epsilon,S1),\,(S1,\epsilon,S0)\})$

Quiz 2: Which NFA matches a* ?

Quiz 2: Which NFA matches a* ?

Quiz 3: Which NFA matches **a**|**b***?

Quiz 3: Which NFA matches **a**|**b***?

Draw NFAs for the regular expression (0|1)*110*

Recap

- Finite automata
 - Alphabet, states...
 - (Σ , Q, q_0 , F, δ)
- Types

- Reducing RE to NFA
 - Concatenation

Reduction Complexity

- Given a regular expression A of size n...
 Size = # of symbols + # of operations
- How many states does
 A> have?
 - Two added for each , two added for each *
 - O(n)
 - That's pretty good!

Reducing NFA to DFA

Why NFA \rightarrow DFA

DFA is generally more efficient than NFA

Language: (a|b)*ab

Why NFA \rightarrow DFA

- DFA has the same expressive power as NFAs.
 - Let language L ⊆ Σ*, and suppose L is accepted by NFA N = (Σ, Q, q₀, F, δ). There exists a DFA D= (Σ, Q', q'₀, F', δ') that also accepts L. (L(N) = L(D))
- NFAs are more flexible and easier to build. But DFAs have no less power than NFAs.

NFA ↔ DFA

Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states
- Intuition
 - Build DFA where
 - Each DFA state represents a set of NFA "current states"
- Example

Algorithm for Reducing NFA to DFA

- Reduction applied using the subset algorithm
 - DFA state is a subset of set of all NFA states
- Algorithm
 - Input
 - > NFA (Σ , Q, q₀, F_n, δ)
 - Output
 - > DFA (Σ , R, r₀, F_d, δ)
 - Using two subroutines
 - > ϵ -closure(δ , p) (and ϵ -closure(δ , Q))
 - > move(δ , p, σ) (and move(δ , Q, σ))
 - (where p is an NFA state)

ε-transitions and ε-closure

- We say $p \xrightarrow{\epsilon} q$
 - If it is possible to go from state p to state q by taking only $\epsilon\text{-}$ transitions in δ
 - If $\exists p, p_1, p_2, \dots p_n, q \in Q$ such that $\geq \{p, \epsilon, p_1\} \in \delta, \{p_1, \epsilon, p_2\} \in \delta, \dots, \{p_n, \epsilon, q\} \in \delta$
- ε-closure(δ, p)
 - Set of states reachable from p using ε-transitions alone
 - > Set of states q such that $p \xrightarrow{\epsilon} q$ according to δ
 - ≻ ε-closure(δ, p) = {q | p $\xrightarrow{\epsilon}$ q in δ }
 - $\succ \epsilon\text{-closure}(\delta, Q) = \{ q \mid p \in Q, p \xrightarrow{\epsilon} q \text{ in } \delta \}$
 - Notes
 - > ϵ -closure(δ , p) always includes p

ε-closure: Example 1

- Following NFA contains
 - $p1 \xrightarrow{\epsilon} p2$
 - $p2 \xrightarrow{\epsilon} p3$
 - $p1 \xrightarrow{\epsilon} p3$

> Since p1 $\xrightarrow{\epsilon}$ p2 and p2 $\xrightarrow{\epsilon}$ p3

- ε-closures
 - ε-closure(p1) =
 - ε-closure(p2) =
 - ε-closure(p3) =
 - ε-closure({ p1, p2 }) =

{ p1, p2, p3 } { p2, p3 } { p3 } { p1, p2, p3 } ∪ { p2, p3 }

ε-closure: Example 2

- Following NFA contains
 - $p1 \xrightarrow{\epsilon} p3$
 - $p3 \xrightarrow{\epsilon} p2$
 - $p1 \xrightarrow{\epsilon} p2$

- ε-closures
 - ε-closure(p1) =
 - ε-closure(p2) =
 - ε-closure(p3) =
 - ε-closure({ p2,p3 }) =

{ p1, p2, p3 }
{ p2 }
{ p2, p3 }
{ p2, p3 }
{ p2 } ∪ { p2, p3 }

ε-closure Algorithm: Approach

- NFA (Σ , Q, q₀, F_n, δ), State Set R ► Input:
- ► Output: State Set R'
- Algorithm

```
Let R' = R
```

Repeat

Let R = R'Let R' = R \cup {q | p \in R, (p, ε , q) \in δ } // new ε -reachable states Until R = R'

// continue from previous // stop when no new states

// start states

This algorithm computes a fixed point

ε-closure Algorithm Example

Calculate ε-closure(δ,{p1})

R	R'
{p1}	{p1}
{p1}	{p1, p2}
{p1, p2}	{p1, p2, p3}
{p1, p2, p3}	{p1, p2, p3}

Let R' = R Repeat Let R= R' Let R' = R \cup {q | p \in R, (p, ε , q) \in δ } Until R = R'

Calculating move(p,σ)

- move(δ,p,σ)
 - Set of states reachable from p using exactly one transition on symbol $\boldsymbol{\sigma}$
 - \succ Set of states q such that {p, $\sigma,$ q} $\in \delta$
 - $\succ move(\delta,p,\sigma) = \{ q \mid \{p, \sigma, q\} \in \delta \}$
 - $\succ move(\delta,Q,\sigma) = \{ q \mid p \in Q, \{p, \sigma, q\} \in \delta \}$
 - i.e., can "lift" move() to a set of states Q
 - Notes:

> move(δ ,p, σ) is \emptyset if no transition (p, σ ,q) $\in \delta$, for any q

$move(p,\sigma)$: Example 1

- Following NFA
 - Σ = { a, b }

Move

- move(p1, a) =
- move(p1, b) =
- move(p2, a) =
- move(p2, b) =
- move(p3, a) =
- move(p3, b) =

Ø Ø

{ p3 }

Ø

Ø

move({p1,p2},b) = { p3 }

a

b

a

p2

$move(p,\sigma)$: Example 2

Following NFA

• Σ = { a, b }

Move

move(p1, a) =

{ p2 }

{ p3 }

{ p3 }

Ø

Ø

Ø

- move(p1, b) =
- move(p2, a) =
- move(p2, b) =
- move(p3, a) =
- move(p3, b) =

 $move(\{p1,p2\},a) = \{p2,p3\}$

NFA \rightarrow DFA Reduction Algorithm ("subset")

- ▶ Input NFA (Σ, Q, q₀, F_n, δ), Output DFA (Σ, R, r₀, F_d, δ')
- Algorithm

```
Let r_0 = \varepsilon-closure(\delta, q_0), add it to R
While \exists an unmarked state r \in R
       Mark r
        For each \sigma \in \Sigma
               Let E = move(\delta, r, \sigma)
               Let e = \varepsilon-closure(\delta, E)
               lf e ∉ R
                       Let R = R \cup \{e\}
               Let \delta' = \delta' \cup \{r, \sigma, e\}
Let \mathbf{F}_{d} = \{\mathbf{r} \mid \exists \mathbf{s} \in \mathbf{r} \text{ with } \mathbf{s} \in \mathbf{F}_{n}\}
```

- // DFA start state
- // process DFA state r
- // each state visited once
- // for each symbol σ
- // states reached via σ
- // states reached via $\boldsymbol{\epsilon}$
- // if state e is new
- // add e to R (unmarked)
- // add transition r \rightarrow e on σ
- // final if include state in ${\rm F_n}$

$NFA \rightarrow DFA Example$

- Start = ε-closure(δ,p1) = { {p1,p3} }
- R = { {p1,p3} }
- $r \in R = \{p1, p3\}$
- move(δ ,{p1,p3},a) = {p2}
 - ightarrow e = ε -closure(δ ,{p2}) = {p2}
 - $\succ R = R \cup \{\{p2\}\} = \{\{p1, p3\}, \{p2\}\}$
 - $\succ \delta' = \delta' \cup \{\{p1,p3\}, a, \{p2\}\}$
- move(δ ,{p1,p3},b) = Ø

NFA \rightarrow DFA Example (cont.)

- R = { {p1,p3}, {p2} }
- $r \in R = \{p2\}$
- move(δ ,{p2},a) = Ø
- $move(\delta, \{p2\}, b) = \{p3\}$
 - ightarrow e = ε -closure(δ ,{p3}) = {p3}
 - $\succ R = R \cup \{\{p3\}\} = \{ \{p1, p3\}, \{p2\}, \{p3\} \}$
 - $\succ \delta' = \delta' \cup \{\{p2\}, b, \{p3\}\}$

NFA

DFA

NFA \rightarrow DFA Example (cont.)

- $R = \{ \{p1,p3\}, \{p2\}, \{p3\} \}$
- $r \in R = \{p3\}$
- Move({p3},a) = Ø
- Move({p3},b) = Ø
- Mark {p3}, exit loop
- $F_d = \{\{p1,p3\}, \{p3\}\}\$ > Since $p3 \in F_n$
- Done!

NFA

DFA

NFA \rightarrow DFA Example 2

► NFA

DFA

$$R = \{ \{A\}, \{B,D\}, \{C,D\} \}$$

Quiz 4: Which DFA is equiv to this NFA?

Quiz 4: Which DFA is equiv to this NFA?

Actual Answer

NFA \rightarrow DFA Example 3

$$R = \{ \{A, E\}, \{B, D, E\}, \{C, D\}, \{E\} \}$$