
CMSC 330: Organization of Programming

Languages

Regular Expressions and

Finite Automata

1CMSC330 Spring 2025

2

How do regular expressions work?

What we’ve learned

• What regular expressions are

• What they can express, and cannot

• Programming with them

What’s next: how they work

• A great computer science result

CMSC330 Spring 2025

3

A Few Questions About REs

How are REs implemented?

• Given an arbitrary RE and a string, how to decide whether the

RE matches the string?

What are the basic components of REs?

• Can implement some features in terms of others

➢ E.g., e+ is the same as ee*

What does a regular expression represent?

• Just a set of strings

➢ This observation provides insight on how we go about our implementation

CMSC330 Spring 2025

4

Definition: Alphabet

An alphabet is a finite set of symbols

• Usually denoted Σ

Example alphabets:

• Binary:

• Decimal:

• Alphanumeric:

Σ = {0,1}

Σ = {0,1,2,3,4,5,6,7,8,9}

Σ = {0-9,a-z,A-Z}

CMSC330 Spring 2025

5

Definition: String

A string is a finite sequence of symbols from Σ

• ε is the empty string ("" in OCaml)

• |s| is the length of string s

➢ |Hello| = 5, |ε| = 0

• Note

➢ Ø is the empty set (with 0 elements)

➢ Ø ≠ { ε } (and Ø ≠ ε)

Example strings over alphabet Σ = {0,1} (binary):

• 0101

• 0101110

• ε

CMSC330 Spring 2025

6

Definition: Language

A language L is a set of strings over an alphabet

Example: All strings of length 1 or 2 over alphabet Σ = {a, b, c}

that begin with a

• L = { a, aa, ab, ac }

Example: All strings over Σ = {a, b}

• L = { ε, a, b, aa, bb, ab, ba, aaa, bba, aba, baa, … }

• Language of all strings written Σ*

CMSC330 Spring 2025

7

Definition: Language (cont.)

Example: The set of phone numbers over the alphabet Σ = {0, 1, 2,

3, 4, 5, 6, 7, 8, 9, (,), -}

• Give an example element of this language

• Are all strings over the alphabet in the language?

• Is there a regular expression for this language?

Example: The set of all valid (runnable) OCaml programs

• Later we’ll see how we can specify this language

• (Regular expressions are useful, but not sufficient)

\(\d{3}\)\d{3}-\d{4}

No

(123)456-7890

CMSC330 Spring 2025

8

Operations on Languages

Let Σ be an alphabet and let L, L1, L2 be languages over Σ

Concatenation L1L2 creates a language defined as

• L1L2 = { xy | x ∊ L1 and y ∊ L2}

Union creates a language defined as

• L1 ∪ L2 = { x | x ∊ L1 or x ∊ L2}

Kleene closure creates a language is defined as

• L* = { x | x = ε or x ∊ L or x ∊ LL or x ∊ LLL or …}

CMSC330 Spring 2025

9

Operations Examples

Let L1 = { a, b }, L2 = { 1, 2, 3 } (and Σ = {a,b,1,2,3})

What is L1L2 ?

• { a1, a2, a3, b1, b2, b3 }

What is L1 ∪ L2 ?

• { a, b, 1, 2, 3 }

What is L1* ?

• { ε, a, b, aa, bb, ab, ba, aaa, aab, bba, bbb, aba, abb, baa, bab, … }

CMSC330 Spring 2025

Quiz 1: Which string is not in L3

A. cd
B. c

C.ε

D.d

L1 = {a, ab, c, d, ε} where Σ =

{a,b,c,d}

L2 = {d}

L3 = L1 ∪ L2

10CMSC330 Spring 2025

Quiz 1: Which string is not in L3

A. cd
B. c

C.ε

D.d

L1 = {a, ab, c, d, ε} where Σ =

{a,b,c,d}

L2 = {d}

L3 = L1 ∪ L2

11CMSC330 Spring 2025

Quiz 2: Which string is not in L3

A. a
B. abd

C.abdd

D.adad

L1 = {a, ab, c, d, ε} where Σ =

{a,b,c,d}

L2 = {d}

L3 = L1(L2*)

12CMSC330 Spring 2025

Quiz 2: Which string is not in L3

A. a
B. abd

C.abdd

D.adad

L1 = {a, ab, c, d, ε} where Σ =

{a,b,c,d}

L2 = {d}

L3 = L1(L2*)

13CMSC330 Spring 2025

14

Regular Expressions: Grammar

We can define a grammar for regular expressions R

 R ::= Ø The empty language

 | ε The empty string

 | σ A symbol from alphabet Σ

 | R1R2 The concatenation of two regexps

 | R1|R2 The union of two regexps

 | R* The Kleene closure of a regexp

CMSC330 Spring 2025

15

Regular Languages

Regular expressions denote regular languages

Not all languages are regular

• Examples (without proof):

➢ The set of palindromes over Σ

➢ {anbn | n > 0 } (an = sequence of n a’s)

Almost all programming languages are not regular

• But aspects of them sometimes are (e.g., identifiers)

• Regular expressions are commonly used in parsing tools

CMSC330 Spring 2025

16

Semantics: Regular Expressions (1)

Given an alphabet Σ, the regular expressions over Σ are

defined inductively as follows

regular expression denotes language

Ø Ø

ε {ε}

each symbol σ ∊ Σ {σ}

Constants

Ex: with Σ = { a, b }, regex a denotes language {a}

 regex b denotes language {b}
CMSC330 Spring 2025

17

Semantics: Regular Expressions (2)

Let A and B be regular expressions denoting languages LA

and LB, respectively. Then:

There are no other regular expressions over Σ

regular expression denotes language

AB LALB

A|B LA ∪ LB

A* LA*

Operations

CMSC330 Spring 2025

18

Terminology etc.

Regexps apply operations to symbols

• Generates a set of strings (i.e., a language)

➢ (Formal definition shortly)

• Examples

➢ a generates language {a}

➢ a|b generates language {a} ∪ {b} = {a, b}

➢ a* generates language {ε} ∪ {a} ∪ {aa} ∪ … = {ε, a, aa, … }

If s ∊ language L generated by a RE r, we say that r

accepts, describes, or recognizes string s

CMSC330 Spring 2025

19

Regular Expressions

Almost all of the features we’ve seen for REs can be

reduced to this formal definition

• OCaml – concatenation of single-symbol REs

• /(OCaml|Rust)/ – union

• /(OCaml)*/ – Kleene closure

• /(OCaml)+/ – same as (OCaml)(OCaml)*

• /(Ocaml)?/ – same as (ε|(OCaml))

• /[a-z]/ – same as (a|b|c|...|z)

• / [^0-9]/ – same as (a|b|c|...) for a,b,c,... ∈ Σ - {0..9}

• ^, $ – correspond to extra symbols in alphabet

➢ Think of every string containing a distinct, hidden symbol at its start and at

its end – these are written ^ and $
CMSC330 Spring 2025

20

Implementing Regular Expressions

We can implement a regular expression by turning it into a

finite automaton

• A “machine” for recognizing a regular language

“String”

“String”

“String”

“String”

“String”

“String”
Yes

No

CMSC330 Spring 2025

21

Finite Automaton

Elements

• States S

 (start, final)

• Alphabet Σ

• Transition

edges δ

CMSC330 Spring 2025

22

Finite Automaton

Machine starts in start or initial state

Repeat until the end of the string s is reached

• Scan the next symbol σ ∈ Σ of the string s

• Take transition edge labeled with σ

String s is accepted if automaton is in final

state when end of string s is reached

States

Start state
Final state

Transition on 1

Elements

• States S

 (start, final)

• Alphabet Σ

• Transition

edges δ

CMSC330 Spring 2025

23

Finite Automaton: States

Start state

• State with incoming transition from no other state

• Can have only one start state

Final states

• States with double circle

• Can have zero or more final states

• Any state, including the start state, can be final

S1 S2

CMSC330 Spring 2025

24

Finite Automaton: Example 1

0 0 1 0 1 1
Accepted?

Yes

CMSC330 Spring 2025

25

Finite Automaton: Example 2

0 0 1 0 1 0
Accepted?

No

CMSC330 Spring 2025

26

Quiz 3: What Language is This?

A. All strings over {0, 1}
B. All strings over {1}

C. All strings over {0, 1} of length 1

D. All strings over {0, 1} that end in 1

CMSC330 Spring 2025

27

Quiz 3: What Language is This?

A. All strings over {0, 1}
B. All strings over {1}

C. All strings over {0, 1} of length 1

D. All strings over {0, 1} that end in 1
regular expression for this language is (0|1)*1

CMSC330 Spring 2025

28

Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

accept

s?

state at

end

string

aabcc

CMSC330 Spring 2025

29

Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

YS2aabcc

accept

s?

state at

end

string

CMSC330 Spring 2025

30

Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

accept

s?

state at

end

string

acca

CMSC330 Spring 2025

31

Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

accept

s?

state at

end

string

NS3acca

CMSC330 Spring 2025

32

Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

accept

s?

state at

end

string

aacbbb

CMSC330 Spring 2025

33

Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

accept

s?

state at

end

string

NS3

CMSC330 Spring 2025

aacbbb

34

Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

accept

s?

state at

end

string

ε

CMSC330 Spring 2025

35

Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

accept

s?

state at

end

string

YS0ε

CMSC330 Spring 2025

36

Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

accept

s?

state at

end

string

acba

CMSC330 Spring 2025

37

Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

accept

s?

state at

end

string

NS3acba

CMSC330 Spring 2025

38

Quiz 4: Which string is not accepted?

(a,b,c notation shorthand for three self loops)

A. bcca

B. abbbc

C. ccc

D. ε

CMSC330 Spring 2025

39

Quiz 4: Which string is not accepted?

(a,b,c notation shorthand for three self loops)

A. bcca

B. abbbc

C. ccc

D. ε

CMSC330 Spring 2025

40

Finite Automaton: Example 3

What language does

this FA accept?

a*b*c*

S3 is a dead state –

a nonfinal state with

no transition to

another state
 - aka a trap state

CMSC330 Spring 2025

41

Finite Automaton: Example 4

a*b*c* again, so FAs are not unique

Language?

CMSC330 Spring 2025

Dead State: Shorthand Notation

If a transition is omitted, assume it goes to a dead state

that is not shown

Language?

• Strings over {0,1,2,3} with alternating even and odd digits,

beginning with odd digit

CMSC330 Spring 2025 42

is short for

Finite Automaton: Example 5

Description for each state

• S0 = “Haven't seen anything yet” OR “Last symbol seen was a b”

• S1 = “Last symbol seen was an a”

• S2 = “Last two symbols seen were ab”

• S3 = “Last three symbols seen were abb”

CMSC330 Spring 2025 43

Finite Automaton: Example 5

Language as a regular expression?

(a|b)*abb

CMSC330 Spring 2025 44

Quiz 5

45

Over Σ={a,b}, this FA accepts only:

0

b

a

b 0

1

A. A string that contains a single b.

B. Any string in {a,b}.

C. A string that starts with b followed by a’s.

D. One or more b’s, followed by zero or more a’s.

CMSC330 Spring 2025

Quiz 5

46

Over Σ={a,b}, this FA accepts only:

0

b

a

b 0

1

A. A string that contains a single b.

B. Any string in {a,b}.

C. A string that starts with b followed by a’s.

D. One or more b’s, followed by zero or more a’s.

CMSC330 Spring 2025

Exercises: Define an FA over Σ = {0,1}

That accepts strings containing two consecutive 0s

followed by two consecutive 1s

That accepts strings with an odd number of 1s

That accepts strings containing an even number of 0s and

any number of 1s

That accepts strings containing an odd number of 0s and

odd number of 1s

That accepts strings that DO NOT contain odd number of

0s and an odd number of 1s

47CMSC330 Spring 2025

Exercises: Define an FA over Σ = {0,1}

That accepts strings with an odd number of 1s

48CMSC330 Spring 2025

Exercises: Define an FA over Σ = {0,1}

That accepts strings with an odd number of 1s

49CMSC330 Spring 2025

Exercises: Define an FA over Σ = {a,b}

That accepts strings containing an even number of a’s and

any number of b’s

50CMSC330 Spring 2025

Exercises: Define an FA over Σ = {0,1}

That accepts strings containing an even number of 0s and

any number of 1s

51CMSC330 Spring 2025

Exercises: Define an FA over Σ = {0,1}

That accepts strings containing two consecutive 0s

followed by two consecutive 1s

52CMSC330 Spring 2025

Exercises: Define an FA over Σ = {0,1}

That accepts strings containing two consecutive 0s very

immediately (right after, no other things in between)

followed by two consecutive 1s

53CMSC330 Spring 2025

Exercises: Define an FA over Σ = {0,1}

That accepts strings end with two consecutive 0s followed

by two consecutive 1s

54CMSC330 Spring 2025

Exercises: Define an FA over Σ = {0,1}

That accepts strings end with two consecutive 0s followed

by two consecutive 1s

55CMSC330 Spring 2025

Exercises: Define an FA over Σ = {0,1}

That accepts strings containing an odd number of 0s and

odd number of 1s

56CMSC330 Spring 2025

Exercises: Define an FA over Σ = {0,1}

That accepts strings containing an odd number of 0s and

odd number of 1s

57

4 states:

0s 1s

e e

o e

e o

o o

CMSC330 Spring 2025

Exercises: Define an FA over Σ = {0,1}

That accepts strings that DO NOT contain odd number of

0s and an odd number of 1s

58CMSC330 Spring 2025

Exercises: Define an FA over Σ = {0,1}

That accepts strings that DO NOT contain odd number of

0s and an odd number of 1s

59

Flip each state

CMSC330 Spring 2025

CMSC330 Spring 2025 60

Languages and Machines

A formal language is a set of strings

of symbols drawn from a finite

alphabet.

Can be specified either by

• a set of rules (such as regular

expressions or a CFG) that

generates the language

• a formal machine that accepts

(recognizes) the language.

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: How do regular expressions work?
	Slide 3: A Few Questions About REs
	Slide 4: Definition: Alphabet
	Slide 5: Definition: String
	Slide 6: Definition: Language
	Slide 7: Definition: Language (cont.)
	Slide 8: Operations on Languages
	Slide 9: Operations Examples
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Regular Expressions: Grammar
	Slide 15: Regular Languages
	Slide 16: Semantics: Regular Expressions (1)
	Slide 17: Semantics: Regular Expressions (2)
	Slide 18: Terminology etc.
	Slide 19: Regular Expressions
	Slide 20: Implementing Regular Expressions
	Slide 21: Finite Automaton
	Slide 22: Finite Automaton
	Slide 23: Finite Automaton: States
	Slide 24: Finite Automaton: Example 1
	Slide 25: Finite Automaton: Example 2
	Slide 26: Quiz 3: What Language is This?
	Slide 27: Quiz 3: What Language is This?
	Slide 28: Finite Automaton: Example 3
	Slide 29: Finite Automaton: Example 3
	Slide 30: Finite Automaton: Example 3
	Slide 31: Finite Automaton: Example 3
	Slide 32: Finite Automaton: Example 3
	Slide 33: Finite Automaton: Example 3
	Slide 34: Finite Automaton: Example 3
	Slide 35: Finite Automaton: Example 3
	Slide 36: Finite Automaton: Example 3
	Slide 37: Finite Automaton: Example 3
	Slide 38: Quiz 4: Which string is not accepted?
	Slide 39: Quiz 4: Which string is not accepted?
	Slide 40: Finite Automaton: Example 3
	Slide 41: Finite Automaton: Example 4
	Slide 42: Dead State: Shorthand Notation
	Slide 43: Finite Automaton: Example 5
	Slide 44: Finite Automaton: Example 5
	Slide 45: Quiz 5
	Slide 46: Quiz 5
	Slide 47: Exercises: Define an FA over Σ = {0,1}
	Slide 48: Exercises: Define an FA over Σ = {0,1}
	Slide 49: Exercises: Define an FA over Σ = {0,1}
	Slide 50: Exercises: Define an FA over Σ = {a,b}
	Slide 51: Exercises: Define an FA over Σ = {0,1}
	Slide 52: Exercises: Define an FA over Σ = {0,1}
	Slide 53: Exercises: Define an FA over Σ = {0,1}
	Slide 54: Exercises: Define an FA over Σ = {0,1}
	Slide 55: Exercises: Define an FA over Σ = {0,1}
	Slide 56: Exercises: Define an FA over Σ = {0,1}
	Slide 57: Exercises: Define an FA over Σ = {0,1}
	Slide 58: Exercises: Define an FA over Σ = {0,1}
	Slide 59: Exercises: Define an FA over Σ = {0,1}
	Slide 60

