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How do regular expressions work?

What we’ve learned

• What regular expressions are

• What they can express, and cannot

• Programming with them

What’s next: how they work

• A great computer science result
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A Few Questions About REs

How are REs implemented?

• Given an arbitrary RE and a string, how to decide whether the 

RE matches the string?

What are the basic components of REs?

• Can implement some features in terms of others

➢ E.g., e+ is the same as ee*

What does a regular expression represent?

• Just a set of strings

➢ This observation provides insight on how we go about our implementation
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Definition: Alphabet

An alphabet is a finite set of symbols

• Usually denoted Σ

Example alphabets:

• Binary:

• Decimal:

• Alphanumeric:

Σ = {0,1}

Σ = {0,1,2,3,4,5,6,7,8,9}

Σ = {0-9,a-z,A-Z}
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Definition: String

A string is a finite sequence of symbols from Σ

• ε is the empty string ("" in OCaml)

• |s| is the length of string s

➢ |Hello| = 5, |ε| = 0

• Note

➢ Ø is the empty set (with 0 elements)

➢ Ø ≠ { ε } (and Ø ≠ ε)

Example strings over alphabet Σ = {0,1} (binary):

• 0101

• 0101110

• ε
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Definition: Language

A language L is a set of strings over an alphabet

Example: All strings of length 1 or 2 over alphabet Σ = {a, b, c} 

that begin with a

• L = { a, aa, ab, ac }

Example: All strings over Σ = {a, b}

• L = { ε, a, b, aa, bb, ab, ba, aaa, bba, aba, baa, … }

• Language of all strings written Σ* 
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Definition: Language (cont.)

Example:  The set of phone numbers over the alphabet Σ = {0, 1, 2, 

3, 4, 5, 6, 7, 8, 9, (, ), -}

• Give an example element of this language

• Are all strings over the alphabet in the language?

• Is there a regular expression for this language?

Example: The set of all valid (runnable) OCaml programs

• Later we’ll see how we can specify this language

• (Regular expressions are useful, but not sufficient)

\(\d{3}\)\d{3}-\d{4}

No

(123)456-7890
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Operations on Languages

Let Σ be an alphabet and let L, L1, L2 be languages over Σ

Concatenation L1L2 creates a language defined as

• L1L2 = { xy | x ∊ L1 and y ∊ L2}

Union creates a language defined as

• L1 ∪ L2 = { x | x ∊ L1 or x ∊ L2}

Kleene closure creates a language is defined as

• L* = { x | x = ε or x ∊ L or x ∊ LL or x ∊ LLL or …}
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Operations Examples

Let   L1 = { a, b },   L2 = { 1, 2, 3 }          (and Σ =  {a,b,1,2,3})

What is L1L2 ?

• { a1, a2, a3, b1, b2, b3 }

What is L1 ∪ L2 ?

• { a, b, 1, 2, 3 }

What is L1* ?

• { ε, a, b, aa, bb, ab, ba, aaa, aab, bba, bbb, aba, abb, baa, bab, … }
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Quiz 1: Which string is not in L3

A. cd
B. c

C.ε

D.d

L1 = {a, ab, c, d, ε}      where Σ = 

{a,b,c,d} 

L2 = {d}

L3 = L1 ∪ L2
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Quiz 1: Which string is not in L3

A. cd
B. c

C.ε

D.d

L1 = {a, ab, c, d, ε}      where Σ = 

{a,b,c,d} 

L2 = {d}

L3 = L1 ∪ L2
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Quiz 2: Which string is not in L3

A. a
B. abd

C.abdd

D.adad

L1 = {a, ab, c, d, ε}      where Σ = 

{a,b,c,d} 

L2 = {d}

L3 = L1(L2*)
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Quiz 2: Which string is not in L3

A. a
B. abd

C.abdd

D.adad

L1 = {a, ab, c, d, ε}      where Σ = 

{a,b,c,d} 

L2 = {d}

L3 = L1(L2*)
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Regular Expressions: Grammar

We can define a grammar for regular expressions R

 R ::= Ø  The empty language

      | ε   The empty string

      | σ  A symbol from alphabet Σ

      | R1R2  The concatenation of two regexps

     | R1|R2  The union of two regexps

      | R*  The Kleene closure of a regexp
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Regular Languages

Regular expressions denote regular languages 

Not all languages are regular

• Examples (without proof):

➢ The set of palindromes over Σ

➢ {anbn | n > 0 }   (an = sequence of n a’s)

Almost all programming languages are not regular

• But aspects of them sometimes are (e.g., identifiers)

• Regular expressions are commonly used in parsing tools
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Semantics: Regular Expressions (1)

Given an alphabet Σ, the regular expressions over Σ are 

defined inductively as follows

regular expression denotes language

Ø Ø

ε {ε}

each symbol σ ∊ Σ {σ}

Constants

Ex: with Σ = { a, b }, regex a denotes language {a}

   regex b denotes language {b}
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Semantics: Regular Expressions (2)

Let A and B be regular expressions denoting languages LA 

and LB, respectively. Then:

There are no other regular expressions over Σ

regular expression denotes language

AB LALB

A|B LA ∪ LB

A* LA*

Operations
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Terminology etc.

Regexps apply operations to symbols

• Generates a set of strings (i.e., a language)

➢ (Formal definition shortly)

• Examples

➢ a generates language {a}

➢ a|b generates language {a} ∪ {b} = {a, b}

➢ a* generates language {ε} ∪ {a} ∪ {aa} ∪ … = {ε, a, aa, … } 

If s ∊ language L generated by a RE r, we say that r 

accepts, describes, or recognizes string s
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Regular Expressions

Almost all of the features we’ve seen for REs can be 

reduced to this formal definition

• OCaml – concatenation of single-symbol REs

• /(OCaml|Rust)/ – union

• /(OCaml)*/ – Kleene closure

• /(OCaml)+/ – same as (OCaml)(OCaml)*

• /(Ocaml)?/ – same as (ε|(OCaml))

• /[a-z]/ – same as (a|b|c|...|z)

• / [^0-9]/ – same as (a|b|c|...) for a,b,c,... ∈ Σ - {0..9}

• ^, $ – correspond to extra symbols in alphabet

➢ Think of every string containing a distinct, hidden symbol at its start and at 

its end – these are written ^ and $
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Implementing Regular Expressions

We can implement a regular expression by turning it into a 

finite automaton

• A “machine” for recognizing a regular language

“String”

“String”

“String”

“String”

“String”

“String”
Yes

No
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Finite Automaton

Elements

• States S

    (start, final)

• Alphabet Σ

• Transition 

edges δ
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Finite Automaton

Machine starts in start or initial state

Repeat until the end of the string s is reached

• Scan the next symbol σ ∈ Σ of the string s

• Take transition edge labeled with σ

String s is accepted if automaton is in final 

state when end of string s is reached

States 

Start state
Final state

Transition on 1

Elements

• States S

    (start, final)

• Alphabet Σ

• Transition 

edges δ
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Finite Automaton: States

Start state

• State with incoming transition from no other state

• Can have only one start state

Final states

• States with double circle

• Can have zero or more final states

• Any state, including the start state, can be final

S1 S2
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Finite Automaton: Example 1

0 0 1 0 1 1
Accepted?

Yes
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Finite Automaton: Example 2

0 0 1 0 1 0
Accepted?

No
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Quiz 3: What Language is This?

A. All strings over {0, 1} 
B. All strings over {1}

C. All strings over {0, 1} of length 1 

D. All strings over {0, 1} that end in 1
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Quiz 3: What Language is This?

A. All strings over {0, 1} 
B. All strings over {1}

C. All strings over {0, 1} of length 1 

D. All strings over {0, 1} that end in 1
regular expression for this language is (0|1)*1
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Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

accept

s?

state at 

end

string

aabcc
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Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

YS2aabcc

accept

s?

state at 

end

string
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Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

accept

s?

state at 

end

string

acca
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Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

accept

s?

state at 

end

string

NS3acca
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Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

accept

s?

state at 

end

string

aacbbb
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Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

accept

s?

state at 

end

string

NS3
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Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

accept

s?

state at 

end

string

ε 
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Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

accept

s?

state at 

end

string

YS0ε 
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Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

accept

s?

state at 

end

string

acba

CMSC330 Spring 2025



37

Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

accept

s?

state at 

end

string

NS3acba
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Quiz 4: Which string is not accepted?

(a,b,c notation shorthand for three self loops)

A. bcca

B. abbbc

C. ccc

D. ε
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Quiz 4: Which string is not accepted?

(a,b,c notation shorthand for three self loops)

A. bcca

B. abbbc

C. ccc

D. ε
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Finite Automaton: Example 3

What language does 

this FA accept?

a*b*c*

S3 is a dead state – 

a nonfinal state with 

no transition to 

another state
  - aka a trap state
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Finite Automaton: Example 4

a*b*c* again, so FAs are not unique

Language?
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Dead State: Shorthand Notation

If a transition is omitted, assume it goes to a dead state 

that is not shown

Language?

• Strings over {0,1,2,3} with alternating even and odd digits, 

beginning with odd digit 
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Finite Automaton: Example 5

Description for each state

• S0 = “Haven't seen anything yet” OR “Last symbol seen was a b”

• S1 = “Last symbol seen was an a”

• S2 = “Last two symbols seen were ab”

• S3 = “Last three symbols seen were abb”
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Finite Automaton: Example 5

Language as a regular expression?

(a|b)*abb
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Quiz 5
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Over Σ={a,b}, this FA accepts only:

0

b

a

b 0

1

A. A string that contains a single b.

B. Any string in {a,b}.

C. A string that starts with b followed by a’s.

D. One or more b’s, followed by zero or more a’s.
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Quiz 5
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Over Σ={a,b}, this FA accepts only:

0

b

a

b 0

1

A. A string that contains a single b.

B. Any string in {a,b}.

C. A string that starts with b followed by a’s.

D. One or more b’s, followed by zero or more a’s.
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Exercises: Define an FA over Σ = {0,1} 

That accepts strings containing two consecutive 0s 

followed by two consecutive 1s

That accepts strings with an odd number of 1s

That accepts strings containing an even number of 0s and 

any number of 1s

That accepts strings containing an odd number of 0s and 

odd number of 1s

That accepts strings that DO NOT contain odd number of 

0s and an odd number of 1s
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Exercises: Define an FA over Σ = {0,1} 

That accepts strings with an odd number of 1s
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Exercises: Define an FA over Σ = {0,1} 

That accepts strings with an odd number of 1s

49CMSC330 Spring 2025



Exercises: Define an FA over Σ = {a,b} 

That accepts strings containing an even number of a’s and 

any number of b’s
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Exercises: Define an FA over Σ = {0,1} 

That accepts strings containing an even number of 0s and 

any number of 1s
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Exercises: Define an FA over Σ = {0,1} 

That accepts strings containing two consecutive 0s 

followed by two consecutive 1s
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Exercises: Define an FA over Σ = {0,1} 

That accepts strings containing two consecutive 0s very 

immediately (right after, no other things in between) 

followed by two consecutive 1s
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Exercises: Define an FA over Σ = {0,1} 

That accepts strings end with two consecutive 0s followed 

by two consecutive 1s
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Exercises: Define an FA over Σ = {0,1} 

That accepts strings end with two consecutive 0s followed 

by two consecutive 1s
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Exercises: Define an FA over Σ = {0,1} 

That accepts strings containing an odd number of 0s and 

odd number of 1s
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Exercises: Define an FA over Σ = {0,1} 

That accepts strings containing an odd number of 0s and 

odd number of 1s

57

4 states:

0s  1s

e     e

o     e

e     o

o     o
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Exercises: Define an FA over Σ = {0,1} 

That accepts strings that DO NOT contain odd number of 

0s and an odd number of 1s
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Exercises: Define an FA over Σ = {0,1} 

That accepts strings that DO NOT contain odd number of 

0s and an odd number of 1s

59

Flip each state
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Languages and Machines

A formal language is a set of strings 

of symbols drawn from a finite 

alphabet. 

Can be specified either by 

• a set of rules (such as regular 

expressions or a CFG) that 

generates the language 

• a formal machine that accepts 

(recognizes) the language. 
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