CMSC 330: Organization of Programming Languages

Regular Expressions and Finite Automata
How do regular expressions work?

- What we’ve learned
 - What regular expressions are
 - What they can express, and cannot
 - Programming with them

- What’s next: how they work
 - A great computer science result
A Few Questions About REs

- How are REs implemented?
 - Given an arbitrary RE and a string, how to decide whether the RE matches the string?

- What are the basic components of REs?
 - Can implement some features in terms of others
 - E.g., e+ is the same as ee*

- What does a regular expression represent?
 - Just a set of strings
 - This observation provides insight on how we go about our implementation
Definition: Alphabet

- An alphabet is a finite set of symbols
 - Usually denoted Σ

Example alphabets:
- Binary: $\Sigma = \{0,1\}$
- Decimal: $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$
- Alphanumeric: $\Sigma = \{0-9,a-z,A-Z\}$
Definition: String

- A string is a finite sequence of symbols from Σ
 - ε is the empty string ("" in OCaml)
 - $|s|$ is the length of string s
 - $|\text{Hello}| = 5$, $|\varepsilon| = 0$
 - Note
 - \emptyset is the empty set (with 0 elements)
 - $\emptyset \neq \{ \varepsilon \}$ (and $\emptyset \neq \varepsilon$)

Example strings over alphabet $\Sigma = \{0, 1\}$ (binary):
- 0101
- 0101110
- ε
Definition: Language

- A language L is a set of strings over an alphabet.

Example: All strings of length 1 or 2 over alphabet $\Sigma = \{a, b, c\}$ that begin with a
 - $L = \{ a, aa, ab, ac \}$

Example: All strings over $\Sigma = \{a, b\}$
 - $L = \{ \epsilon, a, b, aa, bb, ab, ba, aaa, bba, aba, baa, \ldots \}$
 - Language of all strings written Σ^*
Definition: Language (cont.)

Example: The set of phone numbers over the alphabet $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 9, (,), -\}$
- Give an example element of this language
 $(123) 456-7890$
- Are all strings over the alphabet in the language?
 No
- Is there a regular expression for this language?
 $\langle (\langle d\{3\} \rangle) d\{3\} - d\{4\}$

Example: The set of all valid (runnable) OCaml programs
- Later we’ll see how we can specify this language
- (Regular expressions are useful, but not sufficient)
Operations on Languages

- Let Σ be an alphabet and let L, L_1, L_2 be languages over Σ

- **Concatenation** $L_1 L_2$ creates a language defined as
 - $L_1 L_2 = \{ xy | x \in L_1 \text{ and } y \in L_2 \}$

- **Union** creates a language defined as
 - $L_1 \cup L_2 = \{ x | x \in L_1 \text{ or } x \in L_2 \}$

- **Kleene closure** creates a language is defined as
 - $L^* = \{ x | x = \epsilon \text{ or } x \in L \text{ or } x \in LL \text{ or } x \in LLL \text{ or } \ldots \}$
Operations Examples

Let $L_1 = \{ a, b \}$, $L_2 = \{ 1, 2, 3 \}$
(and $\Sigma = \{ a, b, 1, 2, 3 \}$)

- What is L_1L_2 ?
 - $\{ a1, a2, a3, b1, b2, b3 \}$

- What is $L_1 \cup L_2$?
 - $\{ a, b, 1, 2, 3 \}$

- What is L_1^* ?
 - $\{ \epsilon, a, b, aa, bb, ab, ba, aaa, aab, bba, bbb, aba, abb, baa, bab, \ldots \}$
Quiz 1: Which string is not in L_3

$L_1 = \{a, ab, c, d, \varepsilon\}$ where $\Sigma = \{a,b,c,d\}$
$L_2 = \{d\}$
$L_3 = L_1 \cup L_2$

A. cd
B. c
C. ε
D. d
Quiz 1: Which string is **not** in L_3

$L_1 = \{a, ab, c, d, \varepsilon\}$ \hspace{1cm} \text{where} \hspace{1cm} \Sigma = \{a,b,c,d\}$

$L_2 = \{d\}$

$L_3 = L_1 \cup L_2$

A. cd
B. c
C. ε
D. d
Quiz 2: Which string is **not** in \(L_3 \)

\[
L_1 = \{a, \ ab, \ c, \ d, \ \varepsilon\} \quad \text{where} \quad \Sigma = \{a,b,c,d\}
\]

\[
L_2 = \{d\}
\]

\[
L_3 = L_1(L_2^*)
\]

A. a
B. abd
C. abdd
D. adad
Quiz 2: Which string is **not** in \(L_3\)

\[L_1 = \{a, ab, c, d, \varepsilon\}\]
\[L_2 = \{d\}\]
\[L_3 = L_1(L_2^*)\]

A. a
B. abd
C. abdd
D. adad
Regular Expressions: Grammar

- We can define a grammar for regular expressions R

$$R ::= \emptyset \quad \text{The empty language}$$
$$\mid \varepsilon \quad \text{The empty string}$$
$$\mid \sigma \quad A \text{ symbol from alphabet } \Sigma$$
$$\mid R_1 R_2 \quad \text{The concatenation of two regexps}$$
$$\mid R_1 | R_2 \quad \text{The union of two regexps}$$
$$\mid R^* \quad \text{The Kleene closure of a regexp}$$
Regular Languages

- Regular expressions denote regular languages
- Not all languages are regular
 - Examples (without proof):
 - The set of palindromes over Σ
 - $\{a^n b^n \mid n > 0\}$ ($a^n =$ sequence of n a’s)
- Almost all programming languages are not regular
 - But aspects of them sometimes are (e.g., identifiers)
 - Regular expressions are commonly used in parsing tools
Given an alphabet \(\Sigma \), the regular expressions over \(\Sigma \) are defined inductively as follows:

Constants

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>({ \varepsilon })</td>
</tr>
<tr>
<td>each symbol (\sigma \in \Sigma)</td>
<td>({ \sigma })</td>
</tr>
</tbody>
</table>

Ex: with \(\Sigma = \{a, b\} \), regex a denotes language \(\{a\} \) regex b denotes language \(\{b\} \)
Let A and B be regular expressions denoting languages L_A and L_B, respectively. Then:

Operations

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>$L_A L_B$</td>
</tr>
<tr>
<td>$A</td>
<td>B$</td>
</tr>
<tr>
<td>A^*</td>
<td>L_A^*</td>
</tr>
</tbody>
</table>

There are no other regular expressions over Σ.

Terminology etc.

- Regexps apply operations to symbols
 - Generates a set of strings (i.e., a language)
 - (Formal definition shortly)
 - Examples
 - a generates language $\{a\}$
 - $a|b$ generates language $\{a\} \cup \{b\} = \{a, b\}$
 - a^* generates language $\{\varepsilon\} \cup \{a\} \cup \{aa\} \cup \ldots = \{\varepsilon, a, aa, \ldots \}$

- If $s \in$ language L generated by a RE r, we say that r accepts, describes, or recognizes string s
Regular Expressions

- Almost all of the features we’ve seen for REs can be reduced to this formal definition
 - OCaml – concatenation of single-symbol REs
 - `/OCaml|Rust/` – union
 - `/OCaml*/` – Kleene closure
 - `/OCaml+/` – same as `(OCaml)(OCaml)*`
 - `/OCaml?/` – same as `(ε|(OCaml))`
 - `/[a-z]/` – same as `(a|b|c|...|z)`
 - `/[^0-9]/` – same as `(a|b|c|...) for a,b,c,... ∈ Σ - {0..9}`
 - `^`, `$` – correspond to extra symbols in alphabet

- Think of every string containing a distinct, hidden symbol at its start and at its end – these are written `^` and `$
Implementing Regular Expressions

- We can implement a regular expression by turning it into a finite automaton
 - A “machine” for recognizing a regular language
Finite Automaton

Elements
- States S (start, final)
- Alphabet Σ
- Transition edges δ
Finite Automaton

- Machine starts in start or initial state
- Repeat until the end of the string \(s \) is reached
 - Scan the next symbol \(\sigma \in \Sigma \) of the string \(s \)
 - Take transition edge labeled with \(\sigma \)
- String \(s \) is accepted if automaton is in final state when end of string \(s \) is reached
Finite Automaton: States

- **Start state**
 - State with incoming transition from no other state
 - Can have only one start state

- **Final states**
 - States with double circle
 - Can have zero or more final states
 - Any state, including the start state, can be final
Finite Automaton: Example 1

0 0 1 0 1 1

Accepted?
Yes
Finite Automaton: Example 2

0 0 1 0 1 0

Accepted?
No
Quiz 3: What Language is This?

A. All strings over \{0, 1\}
B. All strings over \{1\}
C. All strings over \{0, 1\} of length 1
D. All strings over \{0, 1\} that end in 1
Quiz 3: What Language is This?

A. All strings over \{0, 1\}
B. All strings over \{1\}
C. All strings over \{0, 1\} of length 1
D. All strings over \{0, 1\} that end in 1

regular expression for this language is \((0|1)^*1\)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accept s?</th>
</tr>
</thead>
<tbody>
<tr>
<td>acca</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accept s?</th>
</tr>
</thead>
<tbody>
<tr>
<td>acca</td>
<td>S3</td>
<td>N</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accept s?</th>
</tr>
</thead>
<tbody>
<tr>
<td>aacbbb</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accept s?</th>
</tr>
</thead>
<tbody>
<tr>
<td>aacbbb</td>
<td>S3</td>
<td>N</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a, b, c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accept s?</th>
</tr>
</thead>
<tbody>
<tr>
<td>ε</td>
<td>S0</td>
<td>Y</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Quiz 4: Which string is not accepted?

A. bcca
B. abbbbc
C. ccc
D. ε

(a,b,c notation shorthand for three self loops)
Quiz 4: Which string is **not** accepted?

A. bcca
B. abbbcc
C. ccc
D. ε

(a,b,c notation shorthand for three self loops)
What language does this FA accept?

\[a^*b^*c^* \]

S3 is a \textit{dead state} – a nonfinal state with no transition to another state - \textit{aka} a \textit{trap state}
Finite Automaton: Example 4

Language?

\[a^*b^*c^* \] again, so FAs are not unique
Dead State: Shorthand Notation

- If a transition is omitted, assume it goes to a dead state that is not shown

Language?
- Strings over \{0,1,2,3\} with alternating even and odd digits, beginning with odd digit
Finite Automaton: Example 5

- **S0** = “Haven't seen anything yet” OR “Last symbol seen was a b”
- **S1** = “Last symbol seen was an a”
- **S2** = “Last two symbols seen were ab”
- **S3** = “Last three symbols seen were abb”
Finite Automaton: Example 5

Language as a regular expression?
- $(a|b)^*abb$
Over $\Sigma=\{a,b\}$, this FA accepts only:

A. A string that contains a single b.
B. Any string in $\{a,b\}$.
C. A string that starts with b followed by a’s.
D. One or more b’s, followed by zero or more a’s.
Over $\Sigma=\{a,b\}$, this FA accepts only:

A. A string that contains a single b.
B. Any string in \{a,b\}.
C. A string that starts with b followed by a’s.
D. One or more b’s, followed by zero or more a’s.
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing two consecutive 0s followed by two consecutive 1s
- That accepts strings with an odd number of 1s
- That accepts strings containing an even number of 0s and any number of 1s
- That accepts strings containing an odd number of 0s and odd number of 1s
- That accepts strings that DO NOT contain odd number of 0s and an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings with an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings with an odd number of 1s
Exercises: Define an FA over $\Sigma = \{a, b\}$

- That accepts strings containing an even number of a’s and any number of b’s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings containing an even number of 0s and any number of 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings containing two consecutive 0s followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings containing two consecutive 0s very immediately (right after, no other things in between) followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings end with two consecutive 0s followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings end with two consecutive 0s followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings containing an odd number of 0s and odd number of 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing an odd number of 0s and odd number of 1s

4 states:

<table>
<thead>
<tr>
<th>0s</th>
<th>1s</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
</tr>
<tr>
<td>o</td>
<td>e</td>
</tr>
<tr>
<td>e</td>
<td>o</td>
</tr>
<tr>
<td>o</td>
<td>o</td>
</tr>
</tbody>
</table>
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings that DO NOT contain odd number of 0s and an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings that **DO NOT** contain odd number of 0s and an odd number of 1s

Flip each state
Languages and Machines

A formal language is a set of strings of symbols drawn from a finite alphabet.

Can be specified either by

- a set of rules (such as regular expressions or a CFG) that generates the language
- a formal machine that accepts (recognizes) the language.