How do regular expressions work?

- What we’ve learned
 - What regular expressions are
 - What they can express, and cannot
 - Programming with them

- What’s next: how they work
 - A great computer science result

Languages and Machines

A formal language is a set of strings of symbols drawn from a finite alphabet.

Can be specified either by
 - a set of rules (such as regular expressions or a CFG) that generates the language
 - a formal machine that accepts (recognizes) the language.
A Few Questions About REs

- How are REs implemented?
 - Given an arbitrary RE and a string, how to decide whether the RE matches the string?

- What are the basic components of REs?
 - Can implement some features in terms of others
 - E.g., e^* is the same as ee^*

- What does a regular expression represent?
 - Just a set of strings
 - This observation provides insight on how we go about our implementation

Definition: Alphabet

- An alphabet is a finite set of symbols
 - Usually denoted Σ

- Example alphabets:
 - Binary: $\Sigma = \{0,1\}$
 - Decimal: $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$
 - Alphanumeric: $\Sigma = \{0-9,a-z,A-Z\}$

Definition: String

- A string is a finite sequence of symbols from Σ
 - ϵ is the empty string (** in Ruby)
 - $|s|$ is the length of string s
 - $|\text{Hello}| = 5$, $|\epsilon| = 0$
 - Note
 - \emptyset is the empty set (with 0 elements)
 - $\emptyset \neq \{ \epsilon \}$ (and $\emptyset \neq \epsilon$)

- Example strings over alphabet $\Sigma = \{0,1\}$ (binary):
 - 0101
 - 0101110
 - ϵ
Definition: Language

A language \(L \) is a set of strings over an alphabet

Example: All strings of length 1 or 2 over alphabet \(\Sigma = \{a, b, c\} \) that begin with \(a \)
\[L = \{a, aa, ab, ac\} \]

Example: All strings over \(\Sigma = \{a, b\} \)
\[L = \{\varepsilon, a, b, aa, bb, ab, ba, aaa, baa, baa, ...\} \]
Language of all strings written \(\Sigma^* \)

Example: All strings of length 0 over alphabet \(\Sigma \)
\[L = \{s | s \in \Sigma^* \text{ and } |s| = 0\} \]
"the set of strings s such that s is from \(\Sigma^* \) and has length 0"
\[= \{\varepsilon\} \neq \emptyset \]

Definition: Language (cont.)

Example: The set of phone numbers over the alphabet \(\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 9, (, \), \-
\}

Give an example element of this language \((123)456-7890\)

Are all strings over the alphabet in the language? \(\text{No}\)

Is there a regular expression for this language? \(\\text{No}\)

Example: The set of all valid (runnable) OCaml programs

Later we’ll see how we can specify this language

(Regular expressions are useful, but not sufficient)

Operations on Languages

Let \(\Sigma \) be an alphabet and let \(L, L_1, L_2 \) be languages over \(\Sigma \)

Concatenation \(L \cdot L_2 \) creates a language defined as
\[L \cdot L_2 = \{xy | x \in L \text{ and } y \in L_2\} \]

Union creates a language defined as
\[L_1 \cup L_2 = \{x | x \in L_1 \text{ or } x \in L_2\} \]

Kleene closure creates a language is defined as
\[L^* = \{x | x = \varepsilon \text{ or } x \in L \text{ or } x \in LL \text{ or } x \in LLL \ldots\} \]
Operations Examples

Let \(L_1 = \{ a, b \} \), \(L_2 = \{ 1, 2, 3 \} \) (and \(\Sigma = \{ a, b, 1, 2, 3 \} \))

- What is \(L_1 L_2 \)?
 - \(\{ a1, a2, a3, b1, b2, b3 \} \)

- What is \(L_1 \cup L_2 \)?
 - \(\{ a, b, 1, 2, 3 \} \)

- What is \(L_1^* \)?
 - \(\{ \varepsilon, a, b, aa, ab, ba, aaa, aab, bba, aba, abb, baa, bab, \ldots \} \)

Quiz 1: Which string is not in \(L_3 \)

\[L_1 = \{ a, ab, c, d, \varepsilon \} \quad \text{where} \quad \Sigma = \{ a, b, c, d \} \]
\[L_2 = \{ d \} \]
\[L_2 = L_1 \cup L_2 \]

A. cd
B. c
C. \(\varepsilon \)
D. d
Quiz 2: Which string is not in \(L_3 \)

\[L_1 = \{ a, ab, c, d, \varepsilon \} \quad \text{where} \quad \Sigma = \{ a, b, c, d \} \]
\[L_2 = \{ d \} \]
\[L_3 = L_1(L_2^*) \]

A. a
B. abd
C. abdd
D. adad

Regular Expressions: Grammar

We can define a grammar for regular expressions \(R \)

\[R ::= \emptyset \quad \text{The empty language} \]
\[| \varepsilon \quad \text{The empty string} \]
\[| \sigma \quad \text{A symbol from alphabet} \Sigma \]
\[| R_1R_2 \quad \text{The concatenation of two regexps} \]
\[| R_1|R_2 \quad \text{The union of two regexps} \]
\[| R^* \quad \text{The Kleene closure of a regexp} \]
Regular Languages

- Regular expressions denote languages. These are the regular languages
 - aka regular sets
- Not all languages are regular
 - Examples (without proof):
 - The set of palindromes over Σ
 - $\{a^n b^n \mid n > 0\}$ (a sequence of n a’s)
- Almost all programming languages are not regular
 - But aspects of them sometimes are (e.g., identifiers)
 - Regular expressions are commonly used in parsing tools

Semantics: Regular Expressions (1)

- Given an alphabet Σ, the regular expressions over Σ are defined inductively as follows:
 - Constants:
 - \emptyset denotes language \emptyset
 - ε denotes language $\{\varepsilon\}$
 - each symbol $\sigma \in \Sigma$ denotes language $\{\sigma\}$
 - Ex: with $\Sigma = \{a, b\}$, regex a denotes language $\{a\}$
 - regex b denotes language $\{b\}$

Semantics: Regular Expressions (2)

- Let A and B be regular expressions denoting languages L_A and L_B, respectively. Then:
 - Operations:
 - AB denotes language $L_A L_B$
 - AB denotes language $L_A \cup L_B$
 - A^* denotes language L_A^*

- There are no other regular expressions over Σ
Terminology etc.

- Regexps apply operations to symbols (i.e., a language)
 - Generates a set of strings (i.e., a language)
 - (Formal definition shortly)
 - Examples
 - a generates language (a)
 - ab generates language (a) ∪ (b) = {a, b}
 - a*a generates language (a) ∪ (a(a) ∪ (aa)) ∪ ... = {a, aa, ...

- If s ∈ language L generated by a RE r, we say that r accepts, describes, or recognizes string s

Precedence

- Order in which operators are applied is:
 - Kleene closure * > concatenation > union |
 - ab(c | d) = (a b c) | d
 - a(b*) = a (b*) → {a, ab, abb, ...
 - a(b*) = a | (b*) → {a, ε, b, bb, bbb, ...

- We use parentheses () to clarify
 - E.g., a(b)c, (ab)*, (ab)^*
 - Using escaped \ if parens are in the alphabet

Regular Expressions

- Almost all of the features we’ve seen for REs can be reduced to this formal definition
 - OCaml – concatenation of single-symbol REs
 - OCaml|Rust|/ – union
 - OCaml|* – Kleene closure
 - OCaml|\+ – same as (Ruby)|\(Ruby\)*
 - OCaml|\? – same as (\(Ruby\))
 - \[a-z] – same as (Ruby]|\(Ruby\))
 - \[^0-9] – same as (Ruby]|\(Ruby\))
 - /^[0-9] – same as (Ruby]|\(Ruby\)) for a,b,c,... ∈ Σ - {0,9}
 - ^, $ – correspond to extra symbols in alphabet
 - Think of every string containing a distinct, hidden symbol at its start and at end these are written ^ and $
Implementing Regular Expressions

- We can implement a regular expression by turning it into a finite automaton
 - A "machine" for recognizing a regular language

Finite Automaton

Elements
- States S (start, final)
- Alphabet Σ
- Transition edges δ

Machine starts in start or initial state
- Repeat until the end of the string s is reached
 - Scan the next symbol $\sigma \in \Sigma$ of the string s
 - Take transition edge labeled with σ
- String s is accepted if automaton is in final state when end of string s is reached
Finite Automaton: States

- **Start state**
 - State with incoming transition from no other state
 - Can have only one start state

- **Final states**
 - States with double circle
 - Can have zero or more final states
 - Any state, including the start state, can be final

Finite Automaton: Example 1

001011

Accepted?
Yes

Finite Automaton: Example 2

001010

Accepted?
No
Quiz 3: What Language is This?

A. All strings over \{0, 1\}
B. All strings over \{1\}
C. All strings over \{0, 1\} of length 1
D. All strings over \{0, 1\} that end in 1

Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accept s?</th>
</tr>
</thead>
<tbody>
<tr>
<td>aabcc</td>
<td>S2</td>
<td>Y</td>
</tr>
</tbody>
</table>

(a,b,c notation shorthand for three self loops)

String: acca

State at end: S3

Accept: N

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>String</th>
<th>State at End</th>
<th>Accept s?</th>
</tr>
</thead>
<tbody>
<tr>
<td>aacbbb</td>
<td>S3</td>
<td>N</td>
</tr>
</tbody>
</table>

Quiz 4: Which string is **not** accepted?

A. bcca
B. abbbc
C. ccc
D. ε
Quiz 4: Which string is **not** accepted?

A. bcca
B. abbbc
C. ccc
D. ε

Finite Automaton: Example 3

What language does this FA accept?

$\text{a}^*\text{b}^*\text{c}^*$

S3 is a dead state — a nonfinal state with no transition to another state - aka a trap state

Finite Automaton: Example 4

Language?

$\text{a}^*\text{b}^*\text{c}^*$ again, so FAs are not unique
Dead State: Shorthand Notation

- If a transition is omitted, assume it goes to a dead state that is not shown.

Language?
- Strings over \(\{0,1,2,3\}\) with alternating even and odd digits, beginning with odd digit.

Finite Automaton: Example 5

- Description for each state:
 - \(S_0\) = “Haven’t seen anything yet” OR “Last symbol seen was a b”
 - \(S_1\) = “Last symbol seen was an a”
 - \(S_2\) = “Last two symbols seen were ab”
 - \(S_3\) = “Last three symbols seen were abb”

Language as a regular expression?
- \((a|b)*abb\)
Quiz 5

Over $\Sigma = \{a, b\}$, this FA accepts only:

A. A string that contains a single b.
B. Any string in $\{a, b\}$.
C. A string that starts with b followed by a's.
D. One or more b's, followed by zero or more a's.

Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings containing two consecutive 0s followed by two consecutive 1s
- That accepts strings with an odd number of 1s
- That accepts strings containing an even number of 0s and any number of 1s
- That accepts strings containing an odd number of 0s and odd number of 1s
- That accepts strings that DO NOT contain odd number of 0s and an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings with an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings containing an even number of 0s and any number of 1s

Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings containing two consecutive 0s followed by two consecutive 1s

Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings containing two consecutive 0s very immediately (right after, no other things in between) followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings end with two consecutive 0s followed by two consecutive 1s

Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings end with two consecutive 0s followed by two consecutive 1s

Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings containing an odd number of 0s and odd number of 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings containing an odd number of 0s and odd number of 1s

4 states:

- 0s 1s
- e e
- o e
- e o
- o o

CMSC 330 Spring 2024

Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings that DO NOT contain odd number of 0s and an odd number of 1s

CMSC 330 Spring 2024

Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings that DO NOT contain odd number of 0s and an odd number of 1s

Flip each state

CMSC 330 Spring 2024