CMSC 330: Organization of Programming
Languages

Property-Based Random Testing
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How do Test a Program?

. A code tester walks into a bar
* Orders a beer
e Orders ten beers
e Orders 2.15 billion beers
e Orders -1 beer
* Orders a nothing
* Orders a lizard
* Tries to leave without paying
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What is In the secret tests

- Run your code on Linux

- Run your code on Windows

- Run your code Mac

. Run your code on Android

.- Run your code 1000 times

- Run your code on a 20-year old computer
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What is In the secret tests

- Run your code on Linux

- Run your code on Windows

- Run your code Mac

. Run your code on Android

.- Run your code 1000 times

.- Run your code on a 20-year old computer

. NO. We don’t do that
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Let’s test rev (list reverse) ...

let rec rev 1
match 1 with
[1 -> T[]
| h::t -> rev t @ [h]
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Let’s test rev (list reverse) ... with a unit test

let rec rev 1
match 1 with
[1 -> []
| h::t -> rev t @ [h]

let test reverse =
reverse [1;2;3] = [3;2;1]

J 1T X

Function Sample Expected
under test argument result
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Unit Testing

. Hard Coded Tests

. Difficult to write good unit tests
. Time Consuming

. Have to write many tests

. Repeated (redundant) Tests
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Properties

Instead of unit tests on specific inputs and outputs, what
If we could test properties that hold for all inputs ?

let prop reverse 1 = rev (rev 1) =1

* |.e., reversing a list twice gives back the original list

In other words, each of the following evaluates to true
* prop reverse []

* prop reverse [1l; 2; 3]

* prop reverse [1.0; 2.22]
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Property-based Testing

a framework that repeatedly generates random
Inputs, and uses them to confirm that properties hold

let prop reverse 1

™\

rev (rev 1) =1
Confirm the
property holds for

the given input
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QCheck: Property-Based Testing for OCam|

. QCheck tests are described by

* A generator: generates random input
* A property: bool-valued function

true
Ger;'erate | jProperty Wfalse : :6(
Input J (input)? | PO
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Setting Up QCheck

Install
opam install qgcheck

Open the Qcheck module
open QCheck

In utop, before open QCheck
#require “gcheck”

In dune file
(libraries qcheck)
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Let’'s Test Our Property

let prop reverse 1 = rev (rev 1) =1

open QCheck; ;

let test =

Test.make 4—’———’———’__,,,———TesthOO'timeS
~count:1000

~name:”reverse_ﬁest”

(list small int) . :int list arbitrary
. Generates a random int list

T ...and tests the property

(fun x-> prop reverse Xx)
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Let’s test properties of reverse...

let prop reverse 1 = rev (rev 1) =1

open QCheck; ;
let test = Test.make ~count:1000 ~name:“reverse_test”

(list small int) (fun x-> prop reverse Xx);;

* Run the test

QCheck runner.run tests ~verbose:true [test];;

\
generated errof fail pass/total time test name
[v]1000 O |O 1000/1000 0.2sreverse_test
—— e = e e e ———————————————————————————————— g ——— =
success (ran 1 tests) \

Test 1000 times
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Buggy Reverse

let rev 1 =1 (* returns the same list *)

The property did not catch the bug!

let prop reverse 1 = rev (rev 1) =1

A simple unit test would catch the bug

let test reverse = rev [1;2;3] = [3;2;1]
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Another Property

let prop reverse2 1ll m 12 =
rev (11 @ [m] @ 12) = rev 12 @ [m] @ rev 11

rev [1;2]@[3]Q@[4;5] = rev [4;5] @ rev [3] @ rev [1;2]

let test = QCheck.Test.make ~count:1000
~name: '"reverse test2"
(triple (list small int) small int (list small int))
(fun(1l,m,12)-> prop reverse2 1ll m 12)1

:(int list * int * int list) arbitrary
Generates 11 ,x,12

QCheck runner.run tests [test];;
success (ran 1 tests)
- : int =0
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Lesson learned: Garbage in Garbage out

On two occasions | have been asked, —"Pray, Mr. Babbage,
If you put into the machine wrongfigures, will the right
answers come out?” In one case a member of the Upper,
and in the other a member of the Lower, House put this
guestion. | am not able rightly to apprehend the kind of
confusion of ideas that could provoke such a question.

— Charles Babbage, 1864

Bad generators and properties produce bad results.
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Another example: Let’s test delete...

let rec delete x 1 = match 1 with
[1 -> [
| (y::ys) -> if x y then ys
else y:: (delete x ys)

let prop delete x 1 =
not (List.mem x (delete x 1))

x should not be a member
If deleted.
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Testing delete...

let prop delete x 1 =
not (List.mem x (delete x 1))

let test = Test.make ~count:1000
~name:”delete_test"

(pair small int (list small int))
(fun(x,1)-> prop delete x 1) \\\\\\\\

Generate an int and an int list

QCheck runner.run tests [test];;
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Let’s test properties of delete...

--- Failure ----------- - - - ———- = — -

Test reverse test failed (11 shrink steps):
(0, [0; O])

failure (1 tests failed, 0 tests errored, ran 1 tests)
- :int =1
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Delete only deleted the first occurrence

NoO recursive

call!
/

let rec delete x 1 = match 1 with
[1 -> []
| (y::ys) -> if x = y then ys
else y:: (delete x ys)

&/
delete 2 [2;2;3] returns [2;3] r"\
o~
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Property: is_sorted

. Whether a list Is sorted in non-decreasing order

let rec is sorted 1lst =
match lst with
| [] -> true
| [h] -> true
| hl::(h2::t as t2) -> hl <= h2 && is sorted t2
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Arbitrary Handles Random Inputs

An 'a arbitrary represents an "arbitrary" value of type 'a

It is used to describe how to

* generate random values

* shrink them (make counter-examples as small as possible)
* print them

small int: int arbitrary
list: 'a arbitrary -> 'a list arbitrary
triple: 'a arbitrary ->

'b arbitrary ->

'c arbitrary -> ('a * 'b * 'c) arbitrary
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Arbitrary: The Detalls

type 'a arbitrary = {
gen: 'a Gen.t;
print: ('a -> string) option; (**printvalues *)
small: ('a -> int) option; (**size of example *)
shrink: 'a Shrink.t option; (**shrink to smaller examples *)
collect: ('a -> string) option; (** map value to tag, and group by tag *)
stats : 'a stat list; (** statistics to collect and print *)

CMSC 330 Fall 2024 23



Build an Arbitrary

make
?print:'a Print.t ->
?small: ('a -> int) ->
?shrink:'a Shrink.t ->
?collect: ('a -> string) ->
?stats:'a stat list -> 'a Gen.t -> 'a arbitrary

Build an arbitrary that generates random ints

# make (Gen.int);;

- : int arbitrary =

{gen = <fun>; print = None; small = None; shrink = None;
collect = None;stats = []}

CMSC 330 Fall 2024 24



Random Generator

'a QCheck.Gen. t Is afunction that takes in a Pseudorandom
number generator, uses it to produce a random value of type ‘a.

For example, QCheck .Gen.int generates random integers, while
QCheck.Gen. string generates random strings. Let us look at a

few more of them:

module Gen :
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sig
val
val
val
val
val
val

end

int : int t

small int : int t

int range : int -> int -> int t

list : 'a t -> 'a list t

string : ?gen:char t -> string t

small string : ?gen:char t -> string t
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Sampling Generators

Gen.generatel Gen.small int
7

Gen.generate ~n:10 Gen.small int
int list =[6,;8,;78;87;9;9;6,;2;3;27]

CMSC 330 Fall 2024

26



Sampling Generators

« Generate 5 int lists
let t = Gen.generate ~n:5 (Gen.list Gen.small int);;

val t : int list list =[[4;2;7;8;..1;..;[0;2;97]]

« Generate two string lists
let s = Gen.generate ~n:2 (Gen.list Gen.string) ;;
val s : string 1list list =[[ “A”;”B”;..]1; [“C”;”d"”;..]1]
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Combining Generators

frequency: (int * ‘a) list ->‘a ‘a Gen.t
Generate 80% letters, and 20% space
Gen.generate ~n:10
(Gen. frequency [(1,Gen.return ' ‘') ;

(3,Gen.char range 'a' 'z')]);;

- : char list=['i';"' '";'J';'h';'t';" ';
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Shrinking

Our Delete example without shrinking...

--- Failure -----—-———-———-———————————————

Test anon test 1 failed (0 shrink steps):

(7, [0; 4; 3; 7; 0; 2; 7; 1; 1; 2])

...and with: MﬂHﬂEﬁLﬂKLbugz_

--- Failure --------- - - - - - - ——————————————-

Test anon_test 1 failed (8 shrink steps):

(2, [2; 2])
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Shrinking

How do we go from this...

(7, [0; 4; 3; 7; 0; 2; 7; 1; 1; 2])

...to this?
(2, [2; 2]) List of "smaller” inputs
\/
* Given a shrinking function £ ::'a -> ‘a list
* And a counterexample x :: ‘a

Repeat until a minimal one is found.
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Try all elements of (£ x) to find another failing input...
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Shrinkers

A shrinker attempts to cut a counterexample down to
something more comprehensible for humans

A QCheck shrinker is a function from a counterexample to an
iterator of simpler values:

'a Shrink.t = 'a -> 'a QCheck.Iter.t
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Shrinkers and iterators in QCheck

Given a counterexample, QCheck calls the iterator
to find a simpler value, that is still a
counterexample

Input

-

-l

Shrink

Some input

* (fun 1 -> not (Prop 1i))

)

-

4 .
Iter. find } None

Print

counterexample

After a successful shrink, the shrinker is called again.
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Shrinkers

QCheck’s Shrink contains a number of builtin shrinkers:

Shrink.nil performs no shrinking
Shrink.int for reducing integers
Shrink.char for reducing characters
Shrink. string for reducing strings
Shrink.list for reducing lists
Shrink.pair forreducing pairs
Shrink.triple for reducing triples
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Printers

Type of printers
type ‘a printer = ‘a -> string
Printers for primitives:
* wval pr bool : bool printer
* wval pr int : int printer
* wval pr list : ‘a printer ->

. ‘a list printer

CMSC 330 Fall 2024

34



Summary

. We've taken a brief look at QCheck Property Based
Testing
* how to generate random tests
* how to build an arbitrary
* how to use shrinkers
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