CMSC 330: Organization of Programming
Languages

Property-Based Random Testing

CMSC 330 Fall 2024

How do Test a Program?

. A code tester walks into a bar
* Orders a beer
e Orders ten beers
e Orders 2.15 billion beers
e Orders -1 beer
* Orders a nothing
* Orders a lizard
* Tries to leave without paying

CMSC 330 Fall 2024

What is In the secret tests

- Run your code on Linux

- Run your code on Windows

- Run your code Mac

. Run your code on Android

.- Run your code 1000 times

- Run your code on a 20-year old computer

CMSC 330 Fall 2024

What is In the secret tests

- Run your code on Linux

- Run your code on Windows

- Run your code Mac

. Run your code on Android

.- Run your code 1000 times

.- Run your code on a 20-year old computer

. NO. We don’t do that

CMSC 330 Fall 2024

Let’s test rev (list reverse) ...

let rec rev 1
match 1 with
[1 -> T[]
| h::t -> rev t @ [h]

CMSC 330 Fall 2024

Let’s test rev (list reverse) ... with a unit test

let rec rev 1
match 1 with
[1 -> []
| h::t -> rev t @ [h]

let test reverse =
reverse [1;2;3] = [3;2;1]

J 1T X

Function Sample Expected
under test argument result

CMSC 330 Fall 2024

Unit Testing

. Hard Coded Tests

. Difficult to write good unit tests
. Time Consuming

. Have to write many tests

. Repeated (redundant) Tests

CMSC 330 Fall 2024

Properties

Instead of unit tests on specific inputs and outputs, what
If we could test properties that hold for all inputs ?

let prop reverse 1 = rev (rev 1) =1

* |.e., reversing a list twice gives back the original list

In other words, each of the following evaluates to true
* prop reverse []

* prop reverse [1l; 2; 3]

* prop reverse [1.0; 2.22]

CMSC 330 Fall 2024

Property-based Testing

a framework that repeatedly generates random
Inputs, and uses them to confirm that properties hold

let prop reverse 1

™\

rev (rev 1) =1
Confirm the
property holds for

the given input

CMSC 330 Fall 2024

Repeatedly
generate input 1

randomly

QCheck: Property-Based Testing for OCam|

. QCheck tests are described by

* A generator: generates random input
* A property: bool-valued function

true
Ger;'erate | jProperty Wfalse : :6(
Input J (input)? | PO

CMSC 330 Fall 2024

10

Setting Up QCheck

Install
opam install qgcheck

Open the Qcheck module
open QCheck

In utop, before open QCheck
#require “gcheck”

In dune file
(libraries qcheck)

CMSC 330 Fall 2024

11

Let’'s Test Our Property

let prop reverse 1 = rev (rev 1) =1

open QCheck; ;

let test =

Test.make 4—’———’———’__,,,———TesthOO'timeS
~count:1000

~name:”reverse_ﬁest”

(list small int) . :int list arbitrary
. Generates a random int list

T ...and tests the property

(fun x-> prop reverse Xx)

CMSC 330 Fall 2024 12

Let’s test properties of reverse...

let prop reverse 1 = rev (rev 1) =1

open QCheck; ;
let test = Test.make ~count:1000 ~name:“reverse_test”

(list small int) (fun x-> prop reverse Xx);;

* Run the test

QCheck runner.run tests ~verbose:true [test];;

\
generated errof fail pass/total time test name
[v]1000 O |O 1000/1000 0.2sreverse_test
—— e = e e e ———————————————————————————————— g ——— =
success (ran 1 tests) \

Test 1000 times

CMSC 330 Fall 2024

13

Buggy Reverse

let rev 1 =1 (* returns the same list *)

The property did not catch the bug!

let prop reverse 1 = rev (rev 1) =1

A simple unit test would catch the bug

let test reverse = rev [1;2;3] = [3;2;1]

CMSC 330 Fall 2024

Another Property

let prop reverse2 1ll m 12 =
rev (11 @ [m] @ 12) = rev 12 @ [m] @ rev 11

rev [1;2]@[3]Q@[4;5] = rev [4;5] @ rev [3] @ rev [1;2]

let test = QCheck.Test.make ~count:1000
~name: '"reverse test2"
(triple (list small int) small int (list small int))
(fun(1l,m,12)-> prop reverse2 1ll m 12)1

:(int list * int * int list) arbitrary
Generates 11 ,x,12

QCheck runner.run tests [test];;
success (ran 1 tests)
- : int =0

CMSC 330 Fall 2024 15

Lesson learned: Garbage in Garbage out

On two occasions | have been asked, —"Pray, Mr. Babbage,
If you put into the machine wrongfigures, will the right
answers come out?” In one case a member of the Upper,
and in the other a member of the Lower, House put this
guestion. | am not able rightly to apprehend the kind of
confusion of ideas that could provoke such a question.

— Charles Babbage, 1864

Bad generators and properties produce bad results.

CMSC 330 Fall 2024 16

Another example: Let’s test delete...

let rec delete x 1 = match 1 with
[1 -> [
| (y::ys) -> if x y then ys
else y:: (delete x ys)

let prop delete x 1 =
not (List.mem x (delete x 1))

x should not be a member
If deleted.

CMSC 330 Fall 2024

17

Testing delete...

let prop delete x 1 =
not (List.mem x (delete x 1))

let test = Test.make ~count:1000
~name:”delete_test"

(pair small int (list small int))
(fun(x,1)-> prop delete x 1) \\\\\\\\

Generate an int and an int list

QCheck runner.run tests [test];;

CMSC 330 Fall 2024 18

Let’s test properties of delete...

--- Failure ----------- - - - ———- = — -

Test reverse test failed (11 shrink steps):
(0, [0; O])

failure (1 tests failed, 0 tests errored, ran 1 tests)
- :int =1

CMSC 330 Fall 2024 19

Delete only deleted the first occurrence

NoO recursive

call!
/

let rec delete x 1 = match 1 with
[1 -> []
| (y::ys) -> if x = y then ys
else y:: (delete x ys)

&/
delete 2 [2;2;3] returns [2;3] r"\
o~

CMSC 330 Fall 2024 20

Property: is_sorted

. Whether a list Is sorted in non-decreasing order

let rec is sorted 1lst =
match lst with
| [] -> true
| [h] -> true
| hl::(h2::t as t2) -> hl <= h2 && is sorted t2

CMSC 330 Fall 2024 21

Arbitrary Handles Random Inputs

An 'a arbitrary represents an "arbitrary" value of type 'a

It is used to describe how to

* generate random values

* shrink them (make counter-examples as small as possible)
* print them

small int: int arbitrary
list: 'a arbitrary -> 'a list arbitrary
triple: 'a arbitrary ->

'b arbitrary ->

'c arbitrary -> ('a * 'b * 'c) arbitrary

CMSC 330 Fall 2024 22

Arbitrary: The Detalls

type 'a arbitrary = {
gen: 'a Gen.t;
print: ('a -> string) option; (**printvalues *)
small: ('a -> int) option; (**size of example *)
shrink: 'a Shrink.t option; (**shrink to smaller examples *)
collect: ('a -> string) option; (** map value to tag, and group by tag *)
stats : 'a stat list; (** statistics to collect and print *)

CMSC 330 Fall 2024 23

Build an Arbitrary

make
?print:'a Print.t ->
?small: ('a -> int) ->
?shrink:'a Shrink.t ->
?collect: ('a -> string) ->
?stats:'a stat list -> 'a Gen.t -> 'a arbitrary

Build an arbitrary that generates random ints

make (Gen.int);;

- : int arbitrary =

{gen = <fun>; print = None; small = None; shrink = None;
collect = None;stats = []}

CMSC 330 Fall 2024 24

Random Generator

'a QCheck.Gen. t Is afunction that takes in a Pseudorandom
number generator, uses it to produce a random value of type ‘a.

For example, QCheck .Gen.int generates random integers, while
QCheck.Gen. string generates random strings. Let us look at a

few more of them:

module Gen :

CMSC 330 Fall 2024

sig
val
val
val
val
val
val

end

int : int t

small int : int t

int range : int -> int -> int t

list : 'a t -> 'a list t

string : ?gen:char t -> string t

small string : ?gen:char t -> string t

25

Sampling Generators

Gen.generatel Gen.small int
7

Gen.generate ~n:10 Gen.small int
int list =[6,;8,;78;87;9;9;6,;2;3;27]

CMSC 330 Fall 2024

26

Sampling Generators

« Generate 5 int lists
let t = Gen.generate ~n:5 (Gen.list Gen.small int);;

val t : int list list =[[4;2;7;8;..1;..;[0;2;97]]

« Generate two string lists
let s = Gen.generate ~n:2 (Gen.list Gen.string) ;;
val s : string 1list list =[[“A”;”B”;..]1; [“C”;”d"”;..]1]

CMSC 330 Fall 2024 27

Combining Generators

frequency: (int * ‘a) list ->‘a ‘a Gen.t
Generate 80% letters, and 20% space
Gen.generate ~n:10
(Gen. frequency [(1,Gen.return ' ‘') ;

(3,Gen.char range 'a' 'z')]);;

- : char list=['i';"' '";'J';'h';'t';" ';

CMSC 330 Fall 2024

28

Shrinking

Our Delete example without shrinking...

--- Failure -----—-———-———-———————————————

Test anon test 1 failed (0 shrink steps):

(7, [0; 4; 3; 7; 0; 2; 7; 1; 1; 2])

...and with: MﬂHﬂEﬁLﬂKLbugz_

--- Failure --------- - - - - - - ——————————————-

Test anon_test 1 failed (8 shrink steps):

(2, [2; 2])

CMSC 330 Fall 2024

Shrinking

How do we go from this...

(7, [0; 4; 3; 7; 0; 2; 7; 1; 1; 2])

...to this?
(2, [2; 2]) List of "smaller” inputs
\/
* Given a shrinking function £ ::'a -> ‘a list
* And a counterexample x :: ‘a

Repeat until a minimal one is found.

CMSC 330 Fall 2024

Try all elements of (£ x) to find another failing input...

30

Shrinkers

A shrinker attempts to cut a counterexample down to
something more comprehensible for humans

A QCheck shrinker is a function from a counterexample to an
iterator of simpler values:

'a Shrink.t = 'a -> 'a QCheck.Iter.t

CMSC 330 Fall 2024

31

Shrinkers and iterators in QCheck

Given a counterexample, QCheck calls the iterator
to find a simpler value, that is still a
counterexample

Input

-

-l

Shrink

Some input

* (fun 1 -> not (Prop 1i))

)

-

4 .
Iter. find } None

Print

counterexample

After a successful shrink, the shrinker is called again.

CMSC 330 Fall 2024

Shrinkers

QCheck’s Shrink contains a number of builtin shrinkers:

Shrink.nil performs no shrinking
Shrink.int for reducing integers
Shrink.char for reducing characters
Shrink. string for reducing strings
Shrink.list for reducing lists
Shrink.pair forreducing pairs
Shrink.triple for reducing triples

CMSC 330 Fall 2024

Printers

Type of printers
type ‘a printer = ‘a -> string
Printers for primitives:
* wval pr bool : bool printer
* wval pr int : int printer
* wval pr list : ‘a printer ->

. ‘a list printer

CMSC 330 Fall 2024

34

Summary

. We've taken a brief look at QCheck Property Based
Testing
* how to generate random tests
* how to build an arbitrary
* how to use shrinkers

CMSC 330 Fall 2024

35

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: How do Test a Program?
	Slide 3: What is in the secret tests
	Slide 4: What is in the secret tests
	Slide 5: Let’s test rev (list reverse) …
	Slide 6: Let’s test rev (list reverse) … with a unit test
	Slide 7: Unit Testing
	Slide 8: Properties
	Slide 9: Property-based Testing
	Slide 10: QCheck: Property-Based Testing for OCaml
	Slide 11: Setting Up QCheck
	Slide 12: Let’s Test Our Property
	Slide 13: Let’s test properties of reverse…
	Slide 14: Buggy Reverse
	Slide 15: Another Property
	Slide 16: Lesson learned: Garbage in Garbage out
	Slide 17: Another example: Let’s test delete…
	Slide 18: Testing delete…
	Slide 19: Let’s test properties of delete…
	Slide 20: Delete only deleted the first occurrence
	Slide 21: Property: is_sorted
	Slide 22: Arbitrary Handles Random Inputs
	Slide 23: Arbitrary: The Details
	Slide 24: Build an Arbitrary
	Slide 25: Random Generator
	Slide 26: Sampling Generators
	Slide 27: Sampling Generators
	Slide 28: Combining Generators
	Slide 29: Shrinking
	Slide 30: Shrinking
	Slide 31: Shrinkers
	Slide 32: Shrinkers and iterators in QCheck
	Slide 33: Shrinkers
	Slide 34: Printers
	Slide 35: Summary

