
CMSC 330: Organization of Programming

Languages

Reference Counting

and Interior Mutability

CMSC330 Fall 2024
1

Rust Ownership and Mutation

• Recall Rust ownership rules

– Each value in Rust has a variable that’s called its owner; there can be
only one

– When the owner goes out of scope, the value will be dropped

• Recall Rust mutability rules

– Mutation can occur only through mutable variables (e.g., the owner) or
references

– Rust permits only one borrowed mutable reference (and no immutable

ones at the same time)

2

Relaxing Rust's Restrictions

• Architecturally, designating one owner that all accesses must go

through can be awkward

– We might end up wanting shared mutable access to the owner!

• Rust provides APIs by which you can get around the compiler-

enforced restrictions against multiple mutable references

– Use reference counting to manage lifetimes safely

– Track borrows at run-time to overcome limited compiler analysis

– Discipline is called interior mutability

– But: extra checks at space and time overhead; some previous compile-

time failures now occur at run-time

5

Multiple Pointers to a Value

• What’s wrong with this code?

– Box::new takes ownership of its argument, so the second

Box::new(a) call fails since a is no longer the owner

• How to allow something like this code?

– Problem: Managing lifetime

6

fn main() {

 let a = Cons(5,

 Box::new(Cons(10,

 Box::new(Nil))));

 let b = Cons(3, Box::new(a));

 let c = Cons(4, Box::new(a));//fails

}

enum List {

 Nil,

 Cons(i32,Box<List>)

}

Rc<T>: Multiple Owners, Dynamically

• This is a smart pointer that associates a counter with the underlying

reference

• Calling clone copies the pointer, not the pointed-to data, and bumps

the counter by one

– By convention, call Rc::clone(&a) rather than a.clone(), as a

visual marker for future performance debugging
• In general, calls to x.clone() are possible issues

• Calling drop reduces the counter by one

• When the counter hits zero, the data is freed

8

Rc::clone “Shares” Ownership

• Rc associates a refCount with the value

• let x = Rc::new(42);

• let y = Rc::clone(x);

• let z = Rc::clone(x);

9

42

valrefCount

stack (for example) heap

does heap allocation, like Box::new, but uses reference counting

clone() increments reference count

clone() increments reference count

123

x

y

z

Lists with Sharing

10

enum List {

 Nil,

 Cons(i32,Rc<List>)

}

use List::{Cons, Nil};

fn main() {

 let a = Rc::new(Cons(5,

 Rc::new(Cons(10,

 Rc::new(Nil)))));

 let b = Cons(3, Rc::clone(&a));

 let c = Cons(4, Rc::clone(&a));//ok

}

Nb. Rc::strong_count returns the current ref count

Reference Counting: Summary

• To create: let r = Rc::new(...);

• To copy a pointer: let s = Rc::clone(&r);

– Increments the reference count

• To move a reference: let t = s;

– Does not increment reference count; s no longer the owner

• To free is automatic: drop is called when variables go out of scope,

reducing the count; freed when 0

• See docs:

– https://doc.rust-lang.org/book/ch15-04-rc.html

– https://doc.rust-lang.org/std/rc/index.html

11

https://doc.rust-lang.org/book/ch15-04-rc.html
https://doc.rust-lang.org/std/rc/index.html

Risks of Reference Counts

• Cyclic data is problematic

– Suppose the arrows are Rc references

– Reference counts are always positive; will never be deallocated!

• Can fix by using weak references (see docs)

• App must be prepared for referent to be revoked

16

Rc References: Mutation?

• With Rc I can now make multiple references and safely manage

lifetimes. Great! Let's see if I can mutate the reference's contents

 let mut b = Rc::new(42);

 *b = 43;

17

warning: variable does not need to be mutable
--> src/main.rs:4:9

 |
4 | let mut b = Rc::new(42);
 | ----^
 | |
 | help: remove this `mut`
 |
 = note: `#[warn(unused_mut)]` on by default

error[E0594]: cannot assign to data in an `Rc`
--> src/main.rs:5:5
|

5 | *b = 43;
| ^^^^^^^ cannot assign
|
= help: trait `DerefMut` is required to modify through a dereference,

but it is not implemented for `Rc<i32>`

https://doc.rust-lang.org/stable/error-index.html

Rc References: No Mutation!

error[E0594]: cannot assign to data in an `Rc`
--> src/main.rs:5:5

 |
5 | *b = 43;
 | ^^^^^^^ cannot assign
 |
 = help: trait `DerefMut` is required to modify through a dereference, but it is not implemented for
`Rc<i32>`

Rc only allows immutable contents

 let mut b = Rc::new(42);

 b = Rc::new(43); // fresh heap alloc

18

mut b means that I can reassign b, but not the object it references!

https://doc.rust-lang.org/stable/error-index.html

Digression: Cells are Mutable

• Cell<T>: like Box<T> but with mutable contents

pub fn set(&self, val: T)

• moves the data in

pub fn get(&self) -> T

• copies the data out

pub fn take(&self) -> T

• moves the data out, leaving Default::default()

pub fn get_mut(&mut self) -> &mut T

• requires a &mut self

19

Cell Limitations

• Cell is great if

• you can copy the contents in and out

• and you have mutable references to the cell whenever you want

to modify the cell's contents

• and you can reason statically about lifetimes

• But what if you can't or don't?

• e.g., you want to access contents of cell without copying it out
(maybe it's a struct that's not Copy)

• Enter: RefCell

21

RefCell<T>

pub const fn new(value: T) -> RefCell<T>

• Looks similar…

pub fn borrow(&self) -> Ref<'_, T>

• This is a dynamic borrow

• "The borrow lasts until the returned Ref exits scope. Multiple immutable

borrows can be taken out at the same time…Panics if the value is

currently mutably borrowed. "

pub fn borrow_mut(&self) -> RefMut<'_, T>

• Note &self, not &mut self!

• "The borrow lasts until the returned RefMut or all RefMuts derived from

it exit scope. The value cannot be borrowed while this borrow is active."

Ref and RefMut are only for use with RefCell

22

Static vs. Dynamic Borrow Tracking

• &T an d &mut T: static (compile-time) tracked of borrows

• RefCell<T>::borrow*: dynamic (run-time) tracked of borrows

 pub fn borrow(&self) -> Ref<'_, T>

 pub fn borrow_mut(&self) -> RefMut<'_, T>

– Ref<'_, T>, RefMut<'_, T> implement dynamic tracking

of outstanding, borrowed references

– If borrow_mut() with an outstanding Ref, panic!

• Static tracking is better if you can make it work

• no run time overhead; earlier bug detection

24

How Does Dynamic Borrowing Work?

• Each RefCell has a borrow count to track outstanding Refs and

RefMuts for that RefCell

• RefCell borrow and borrow_mut increment the count

• When a Ref (or RefMut) goes out of scope, Rust calls drop(),

which decrements the borrow count

 use std::cell::RefCell;

 let c = RefCell::new(5); // imm_count=0

 let m = c.borrow(); // imm_count=1

 let b = c.borrow_mut(); // panic!

25

Shared Mutable Data

• Back to the beginning: We were looking for a way to have shared,
mutable data. How do we do it? Use Rc<RefCell<T>>

• The RefCell permits mutating T (at risk of run-time borrow errors)

• Rc permits sharing, e.g., within a data structure

• Note: Rc<RefCell<u32>> has two counts:

• Reference count for Rc (should this RefCell be deallocated?)

• Incremented via Rc::clone()

• Dynamic version of lifetime

• Borrow count for RefCell (are borrow(), borrow_mut() safe?)

• Incremented via RefCell borrow and borrow_mut

• Dynamic version of borrow checking

26

Quiz 3

let r1 = Rc::new(RefCell::new(42));

let r2 = r1.clone();

let m = (*r1).borrow_mut();

*m = 43;

println!("{:?}", *r2.borrow());

A. "42"

B. "43"

C. panic

D. Compiler error

27

Quiz 3

let r1 = Rc::new(RefCell::new(42));

let r2 = r1.clone();

let m = (*r1).borrow_mut();

*m = 43;

println!("{:?}", *r2.borrow());

A. "42"

B. "43"

C. panic

D. Compiler error

28

error[E0596]: cannot borrow `m` as mutable, as it is not declared as mutable
--> src/main.rs:10:10

 |
9 | let m = (*r1).borrow_mut();
 | - help: consider changing this to be mutable: `mut m`
10 | *m = 43;
 | ^ cannot borrow as mutable

https://doc.rust-lang.org/stable/error-index.html

Quiz 3

let r1 = Rc::new(RefCell::new(42));

let r2 = r1.clone();

let m = (*r1).borrow_mut();

*m = 43;

println!("{:?}", *r2.borrow());

29

borrow_mut() returns a DerefMut
DerefMut:

pub fn deref_mut(&mut self) -> &mut Self::Target

To mutate the referenced value, we need a mutable DerefMut

https://doc.rust-lang.org/std/ops/trait.Deref.html

Quiz 4

let r1 = Rc::new(RefCell::new(42));

let r2 = r1.clone();

let mut m = (*r1).borrow_mut();

*m = 43;

println!("{:?}", *r2.borrow());

A. "42"

B. "43"

C. panic

D. Compiler error

30

Quiz 4

let r1 = Rc::new(RefCell::new(42));

let r2 = r1.clone();

let mut m = (*r1).borrow_mut();

*m = 43;

println!("{:?}", *r2.borrow());

A. "42"

B. "43"

C. panic

D. Compiler error

31

m’s mutable borrow of the RefCell is still outstanding when borrow() is invoked.

Quiz 5

let r1 = Rc::new(RefCell::new(42));

let r2 = r1.clone();

{

 let mut m = (*r1).borrow_mut();

 *m = 43;

}

println!("{:?}", *r2.borrow());

A. "42"

B. "43"

C. panic

32

Quiz 5

let r1 = Rc::new(RefCell::new(42));

let r2 = r1.clone();

{

 let mut m = (*r1).borrow_mut();

 *m = 43;

}

println!("{:?}", *r2.borrow());

A. "42"

B. "43"

C. panic

33

Summary

• From the book [1]:

• Rc<T> enables multiple owners of the same data; Box<T> and

RefCell<T> have single owners.

• Box<T> allows immutable or mutable borrows checked at

compile time; Rc<T> allows only immutable borrows checked at

compile time; RefCell<T> allows immutable or mutable borrows

checked at runtime.

• Because RefCell<T> allows mutable borrows checked at

runtime, you can mutate the value inside the RefCell<T> even

when the RefCell<T> is immutable.

34

[1] https://doc.rust-lang.org/book/ch15-05-interior-mutability.html

Additional examples: https://doc.rust-lang.org/rust-by-example/std/rc.html

https://doc.rust-lang.org/book/ch15-05-interior-mutability.html

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Rust Ownership and Mutation
	Slide 5: Relaxing Rust's Restrictions
	Slide 6: Multiple Pointers to a Value
	Slide 8: Rc<T>: Multiple Owners, Dynamically
	Slide 9: Rc::clone “Shares” Ownership
	Slide 10: Lists with Sharing
	Slide 11: Reference Counting: Summary
	Slide 16: Risks of Reference Counts
	Slide 17: Rc References: Mutation?
	Slide 18: Rc References: No Mutation!
	Slide 19: Digression: Cells are Mutable
	Slide 21: Cell Limitations
	Slide 22: RefCell<T>
	Slide 24: Static vs. Dynamic Borrow Tracking
	Slide 25: How Does Dynamic Borrowing Work?
	Slide 26: Shared Mutable Data
	Slide 27: Quiz 3
	Slide 28: Quiz 3
	Slide 29: Quiz 3
	Slide 30: Quiz 4
	Slide 31: Quiz 4
	Slide 32: Quiz 5
	Slide 33: Quiz 5
	Slide 34: Summary

