Discrete Structures

Number Theory/ Direct proofs 9/20/2022

Topics

- Set operator review
- Closure
- Parity
- Divisibility
- Primes
- Mod
- *Direct* Proofs

Set Review: Identify the operator

 $\{1,2,3\}$?₀ $\{1,3,4\} = \{2\}$

 $\{a,b,c\}$?₀ $\{1,4\} = \{a,b,c\}$

 $\{1,2,3\}$?₁ $\{1,3,4\} = \{1,2,3,4\}$

 $\{a,b,c\}$?₂ $\{1,4\} = \{\}$

 $\{a,b,c\}$?₁ $\{1,4\} = \{1,a,b,c,4\}$

 $\{1,2,3\}$?₂ $\{1,3,4\} = \{1,3\}$

Set Review: Identify the operator

 $\{1,2,3\} - \{1,3,4\} = \{2\}$

 ${a,b,c} - {1,4} = {a,b,c}$

 $\{1,2,3\} \cup \{1,3,4\} = \{1,2,3,4\}$

 $\{a,b,c\} \cup \{1,4\} = \{1,a,b,c,4\}$

 $\{1,2,3\} \cap \{1,3,4\} = \{1,3\}$

 $\{a,b,c\} \cap \{1,4\} = \{\}$

- Z is closed under addition.
- Z is closed under negation.
- Z is closed under subtraction.
- N is closed under addition.
- N is *not* closed under subtraction.
- N is *not* closed under negation.
- R is not closed under square root⁺.
- R⁺ is closed under square root⁺.

- Z is closed under addition.
- Z is closed under negation.
- Z is closed under subtraction.
- N is closed under addition.
- N is *not* closed under subtraction.
- N is *not* closed under negation.
- R is not closed under square root⁺.
- R⁺ is closed under square root⁺.

Does the result of applying the operator *ever* result in a value *outside* the domain?

Yes \Leftrightarrow not closed.

No \Leftrightarrow closed.

Z is closed under addition. $\forall x, y \in Z, (x + y) \in Z$ <u>Z is closed under negation</u>. $\forall x \in Z, \neg x \in Z$ Z is closed under subtraction. $\forall x, y \in Z$, $(x - y) \in Z$ N is closed under addition. $\forall x,y \in N, (x + y) \in N$ N is *not* closed under subtraction. 1, $5 \in N$, $(1 - 5) \notin N$ N is *not* closed under negation. $5 \in N$, $(-5) \notin N$ R is not closed under square root⁺. $-2 \in \mathbb{R}$, sqrt(-2) $\notin \mathbb{R}$ R⁺ is closed under square root⁺.

In this class we may assume

- Laws of algebra
- Equality:
 - $\circ \quad A = B \Leftrightarrow B = A$
 - $A = B \land B = C \Rightarrow A = C$
- Substitution:
 - If A = B, you may substitute B wherever there is A.
- that there is no integer between 0 and 1
- that the set of all integers is closed under
 - \circ addition,
 - subtraction,
 - multiplication

Property of an integer being even or odd.

Property of an integer being even or odd.

Examples:

127:

354:

999:

-192:

Property of an integer being even or odd.

Examples:

127: odd

354: even

999: odd

-192: even

x is even *iff* there is some integer *k* such that x=2k

x is odd *iff* there is some integer *k* such that x=2k+1

 $\forall x \in Z$, EVEN $(x) \Leftrightarrow \exists k \in Z$, x = 2k

 $\forall x \in Z, ODD(x) \Leftrightarrow \exists k \in Z, x = 2k + 1$

$\forall x \in Z, \text{EVEN}(x) \Leftrightarrow \exists k \in \mathbb{Z}, x = 2k$ $\forall x \in Z, \text{ODD}(x) \Leftrightarrow \exists k \in Z, x = 2k + 1$

Property of an integer being even or odd.

Examples:

127 =

354 =

999 =

-192 =

$\forall x \in Z, \text{EVEN}(x) \Leftrightarrow \exists k \in \mathbb{Z}, x = 2k$ $\forall x \in Z, \text{ODD}(x) \Leftrightarrow \exists k \in Z, x = 2k + 1$

Property of an integer being even or odd.

Examples:

- 127 = 2(63) + 1
- 354 = 2(177)

999 = 2(499) + 1

-192 = 2(-96)

8 = 2(4)

9 = 2(4) + 1

-7 = 2(-4) + 1

0, odd or even?

0 = 2(0)

 \forall a,b \in Z, EVEN(6a²b) ?

 $6a^2b = 2(3a^2b)$

```
\forall a,b \in Z, ODD(10a + 8b + 1)?
```

2(5a + 4b) + 1

 $\forall x \in Z, \text{EVEN}(x) \Leftrightarrow \exists k \in \mathbb{Z}, x = 2k$ $\forall x \in Z, \text{ODD}(x) \Leftrightarrow \exists k \in Z, x = 2k + 1$

Is every integer either odd or even?

- 5|15 because 5(3)=15
- 3|10 is false, because there is no integer *z* such that 3z=10

If $n, d \in Z$ then n is divisible by d iff n = d times some integer and $d \neq 0$.

d | n

 \forall *n*,*d* \in *Z*

 $(d \mid n) \Leftrightarrow (\exists k \in Z, n = dk \land d \neq 0)$

Equivalent statements:

n is divisible by *d*

d | *n*

n is a multiple of *d*

d is a factor of n

d is a divisor of n

d divides n

d ∤ *n* is read "*d* does not divide *n*"

- a. Is 21 divisible by 3?
 - a. Yes, 21 = 3(7)
- b. Does 5 divide 40?
 - b. Yes, 40 = 5(8)
- c. Does 7 | 42?
 - c. Yes, 42 = 7(6)
- d. Is 32 a multiple of -16?
 - d. Yes, 32 = (-16)(-2)
- e. Is 6 a factor of 54?
 - e. Yes, 54 = 6(9)
- f. Is 7 a factor of -7?
 - f. Yes, -7 = 7(-1)

If $k \in Z^+$, $k \mid 0$?

Yes, 0 = k(0)

Prime

An integer *n* is **prime** if, and only if, n > 1 and \forall positive integers *r* and *s*, if n = rs, then either *r* or *s* equals *n*.

An integer *n* is **composite** if, and only if, n > 1 and n = rs for some integers *r* and *s* with 1 < r < n and 1 < s < n.

 $\forall n \in Z, n > 1$

 $PRIME(n) \Leftrightarrow \forall r, s \in Z^+, (n=rs) \Rightarrow (r = 1 \land s = n) \lor (r = n \land s = 1)$ $COMPOSITE(n) \Leftrightarrow \exists r, s \in Z^+, (n = rs) \land (1 < r < n) \land (1 < s < n)$

Primes (informal)

An integer > 1 is **prime** iff its only positive factors are 1 and itself.

An integer > 1 not prime is **composite**.

NOTE:

 $\forall x \in \mathbb{Z}, x \leq 1 \Rightarrow \neg PRIME(x) \land \neg COMPOSITE(x)$

Prime Examples

13 is prime. Only factors are 1, 13.

51 is composite. 17(3) = 51

 $5 \mod 3 = 2$

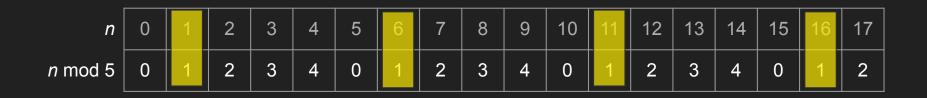
 $4 \mod 4 = 0$

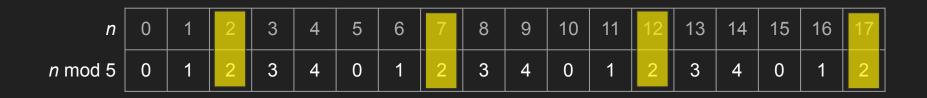
 $12 \mod 5 = 2$

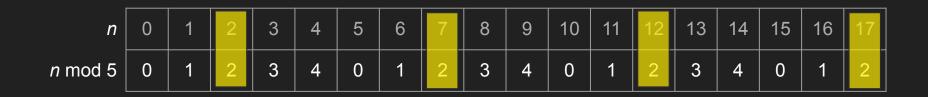
 $7 \mod 5 = 2$

 $-17 \mod 5 = 3 \text{ because } -17 = -4(5) + 3$

x mod *m* = *r x* = *km* + *r*, where *k* is an integer $\land 0 \le r < m$







"7 is congruent (equivalent) to 2 modulo 5" $7 \equiv 2 \pmod{5} \Leftrightarrow 5 \mid (7 - 2)$ $2 \equiv 7 \pmod{5} \Leftrightarrow 5 \mid (2 - 7)$

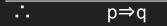
 $m \equiv n \pmod{d} \Leftrightarrow d \mid (m - n)$

 $-8 \equiv 7 \pmod{3}$?

```
Yes, because 3 | ( – 8 – 7)
-8= –5(3)+7
```

Recall

(1)	p ⇒ ¬z	assumption
(2)	z ∧ (p ∨ r)	assumption
(3)	ר q	assumption



Recall

(1)	$p \Rightarrow \neg z$	assumption
(2)	z ∧ (p ∨ r)	assumption
(3)	ר q	assumption
(4)	z	Specialization (2)
(5)	ר p	Modus Tollens (1,4)
(6)	¬p∨q	Generalization (5)
	p⇒q	Definition of Implication Equivalence

Prove: for all integers a, b, and c, if $a \mid b$ and $b \mid c$, then $a \mid c$. We must show: $a \mid c$

In other words, we must prove $\exists k \in Z, c = ak$ by definition of divisibility.

```
Since a \mid b, we know \exists r \in \mathbb{Z}, b = ar
```

```
Since b \mid c, we know \exists s \in Z, c = bs
```

Recall we must show c = ak for some k.

Let us substitute the value for b = ar in c = bs: c = (ar)s.

By associativity, we can state: c = a(rs).

Since *r* & *s* are integers, *rs* is an integer by the closure property of addition over *Z*.

Therefore, we have shown that c = ak where k = rs and c is therefore divisible by a.

a,b,c ∈ Z
a b
b c

Prove: for all integers *a*, *b*, and *c*, if *a* | *b* and *b* | *c*, then *a* | *c*.

(1)	a,b,c ∈ Z	Assumption
(2)	a b	Assumption

(3) *b* | *c* Assumption

(1)	a,b,c ∈ Z	Assumption
(2)	a b	Assumption
(3)	b c	Assumption
(4)	$\exists r \in Z, b = ar$	Definition of (2

(1)	a,b,c ∈ Z	Assumption
(2)	a b	Assumption
(3)	b c	Assumption
(4)	$\exists r \in Z, b = ar$	Definition of (2)
(5)	$\exists s \in Z, c = bs$	Definition of (3)

(1)	a,b,c ∈ Z	Assumption
(2)	a b	Assumption
(3)	b c	Assumption
(4)	$\exists r \in Z, b = ar$	Definition of (2)
(5)	$\exists s \in Z, c = bs$	Definition of (3)
(6)	$\exists s \in \mathbb{Z}, c = (ar)s$	Substitution (4,5

Prove: for all integers *a*, *b*, and *c*, if *a* | *b* and *b* | *c*, then *a* | *c*.

(1)	a,b,c ∈ Z	Assumption
(2)	a b	Assumption
(3)	b c	Assumption
(4)	$\exists r \in Z, b = ar$	Definition of (2)
(5)	$\exists s \in Z, c = bs$	Definition of (3)
(6)	∃ s ∈ Z, c = (ar)s	Substitution (4,5)
(7)		

(7) $s \in 7$, c = a(rs) Associativity (6)

Prove: for all integers *a*, *b*, and *c*, if *a* | *b* and *b* | *c*, then *a* | *c*.

(1)	a,b,c ∈ Z	Assumption
(2)	a b	Assumption
(3)	b c	Assumption
(4)	$\exists r \in Z, b = ar$	Definition of (2)
(5)	$\exists s \in Z, c = bs$	Definition of (3)
(6)	∃ s ∈ Z, c = (ar)s	Substitution (4,5)
(7)	$s \in Z$, $c = a(rs)$	Associativity (6)
	· · _ ¬	<u>~'</u> _ ¬ ^ '

· ...

(1)	a,b,c ∈ Z	Assumption
(2)	a b	Assumption
(3)	b c	Assumption
(4)	$\exists r \in Z, b = ar$	Definition of (2)
(5)	$\exists s \in Z, c = bs$	Definition of (3)
(6)	∃ s ∈ Z, c = (ar)s	Substitution (4,5)
(7)	$s \in Z$, $c = a(rs)$	Associativity (6)
(8)	(rs) ∈ Z	Since r, s \in Z & closure of *
(9)	a c	By definition of divisibility, since c can be written in terms of a * some integer k (7,8)

Prove: $(\forall x \in Z)[$ if x is even, then 3x+7 is odd] Assuming $x \in Z \land x$ is even, we must show 3x + 7 is odd. In other words, we must show $(\exists k \in Z)[3x+7 = 2k + 1].$ If x is even, $(\exists s \in Z)[x = 2s].$ Let us rewrite: 3x+7 = 3(2s) + 7 = 6s + 76s + 7 = 6s + 6 + 1 = (6s + 6) + 1 = 2(3s + 3) + 1.Therefore, if (3s + 3) is an integer, then 3x + 7 = 2k + 1 where k = (3s + 3).

We know 3s + 3 is an integer because s is an integer and +, * are closed on Z.

Therefore, 3x + 7 is odd because it can be written as 2(3s+3) + 1.