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Topics

● Set operator review
● Closure
● Parity
● Divisibility
● Primes
● Mod
● Direct Proofs



Set Review: Identify the operator

{1,2,3} ?0 {1,3,4} = {2}

{a,b,c} ?0 {1,4} = {a,b,c} 

{1,2,3} ?1 {1,3,4} = {1,2,3,4}

{a,b,c} ?1 {1,4} = {1,a,b,c,4}

{1,2,3} ?2 {1,3,4} = {1,3}

 {a,b,c} ?2 {1,4} = {}



Set Review: Identify the operator

{1,2,3} – {1,3,4} = {2}

{a,b,c} – {1,4} = {a,b,c} 

{1,2,3} ∪ {1,3,4} = {1,2,3,4}

{a,b,c} ∪ {1,4} = {1,a,b,c,4}

{1,2,3} ∩ {1,3,4} = {1,3}

 {a,b,c} ∩ {1,4} = {}



Closure property

Z is closed under addition.

Z is closed under negation.

Z is closed under subtraction.

N is closed under addition.

N is not closed under subtraction.

N is not closed under negation.

R is not closed under square root+.

R+ is closed under square root+.



Closure property

Z is closed under addition.

Z is closed under negation.

Z is closed under subtraction.

N is closed under addition.

N is not closed under subtraction.

N is not closed under negation.

R is not closed under square root+.

R+ is closed under square root+.

Does the result of applying the operator 
ever result in a value outside the 
domain?

Yes ⇔ not closed.

No ⇔ closed.



Closure property



Closure property

Z is closed under addition.   ∀ x,y ∈ Z, (x + y) ∈ Z

Z is closed under negation. ∀ x ∈ Z, -x ∈ Z 

Z is closed under subtraction. ∀ x,y ∈ Z, (x - y) ∈ Z

N is closed under addition.  ∀ x,y ∈ N, (x + y) ∈ N

N is not closed under subtraction. 1, 5 ∈ N, (1 - 5) ∉ N

N is not closed under negation. 5 ∈ N, (-5) ∉ N

R is not closed under square root+. -2 ∈ R, sqrt(-2) ∉ R

R+ is closed under square root+. 



Closure Property

In this class we may assume 

● Laws of algebra
● Equality:

○ A = B ⇔ B = A
○ A = B ∧ B = C ⇒ A = C

● Substitution:
○ If A = B, you may substitute B wherever there is A.

● that there is no integer between 0 and 1 
● that the set of all integers is closed under 

○ addition, 
○ subtraction,
○ multiplication
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Property of an integer being even or odd.
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Examples:

127: odd

354: even

999: odd

-192: even
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Parity

x is even iff  there is some integer k such that x=2k

x is odd iff there is some integer k such that x=2k+1

∀ x ∈ Z, EVEN(x) ⇔ ∃ k ∈ Z, x = 2k

∀ x ∈ Z, ODD(x) ⇔ ∃ k ∈ Z, x = 2k + 1



Parity

Property of an integer being even or odd.

Examples:

127  = 2(63) + 1

354  = 2(177)

999   = 2(499)+1

-192 = 2(-96)

∀ x ∈ Z, EVEN(x) ⇔ ∃ k ∈ Z, x = 2k

∀ x ∈ Z, ODD(x) ⇔ ∃ k ∈ Z, x = 2k + 1



Parity

Property of an integer being even or odd.

Examples:

127  = 2(63) + 1

354  = 2(177)

999   = 2(499) +1

-192 = 2(-96)

 8 =

 9 = 

-7 = 

 2(4)

2(4) + 1

2(-4) + 1

∀ x ∈ Z, EVEN(x) ⇔ ∃ k ∈ Z, x = 2k

∀ x ∈ Z, ODD(x) ⇔ ∃ k ∈ Z, x = 2k + 1



Parity

0, odd or even?

0 = 2(0)

∀ a,b ∈ Z, EVEN(6a2b) ?

6a2b = 2(3a2b)

∀ a,b ∈ Z, ODD(10a + 8b + 1) ?

2(5a + 4b) + 1

∀ x ∈ Z, EVEN(x) ⇔ ∃ k ∈ Z, x = 2k

∀ x ∈ Z, ODD(x) ⇔ ∃ k ∈ Z, x = 2k + 1



Parity

Is every integer either odd or even?



Divisibility

5|15 because 5(3)=15

3|10  is false, because there is no integer z such that 3z=10



Divisibility

If n,d ∈ Z then n is divisible by d iff n = d times some integer and d ≠ 0.

d | n

∀ n,d ∈ Z  

(d | n) ⇔ (∃ k ∈ Z, n = dk ∧ d ≠ 0)



Divisibility

Equivalent statements:

n is divisible by d

d | n

n is a multiple of d

d is a factor of n

d is a divisor of n

d divides n



Divisibility

d ∤ n is read “d does not divide n”



Divisibility

a. Is 21 divisible by 3?

b. Does 5 divide 40?

c. Does 7 | 42?

d. Is 32 a multiple of -16?

e. Is 6 a factor of 54?

f. Is 7 a factor of -7?

a. Yes, 21 = 3(7)

b. Yes, 40 = 5(8)

c. Yes, 42 = 7(6)

d. Yes, 32 = (-16)(-2)

e. Yes, 54 = 6(9)

f. Yes, -7 = 7(-1)



Divisibility 

If k ∈ Z+, k | 0?

Yes, 0 = k(0)



Prime

An integer n is prime if, and only if, n > 1 and ∀ positive integers r and s, if n = rs, 
then either r or s equals n. 

An integer n is composite if, and only if, n > 1 and n = rs for some integers r and s 
with 1 < r < n and 1 < s < n.

∀ n ∈ Z, n  > 1 

PRIME(n) ⇔ ∀ r,s ∈ Z+,  (n=rs) ⇒ (r = 1 ∧ s = n) ∨ (r = n ∧ s = 1)

COMPOSITE(n) ⇔ ∃ r,s ∈ Z+, (n = rs) ∧ (1 < r < n) ∧ (1 < s < n)



Primes (informal)

An integer > 1 is prime iff its only positive factors are 1 and itself.

An integer > 1 not prime is composite.

NOTE:

∀ x ∈ Z, x ≤ 1 ⇒ ¬PRIME(x) ∧ ¬COMPOSITE(x)



Prime Examples

13 is prime. Only factors are 1, 13.

51 is composite.  17(3) = 51



Modular Arithmetic

5 mod 3 =

4 mod 4 = 

12 mod 5 = 

7 mod 5 =

2

0

2

2

x mod m = r
x  = km + r, where k is an integer ∧ 0 ≤ r < m 

-17 mod 5 = 3 because -17 = -4(5) + 3  



Modular Arithmetic

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2

n

n mod 5
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Modular Arithmetic

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2

“7 is congruent (equivalent) to 2 modulo 5”
7 ≡ 2 (mod 5) ⇔ 5 | (7 - 2)
2 ≡ 7 (mod 5) ⇔ 5 | (2 - 7)

m ≡ n (mod d) ⇔ d | (m - n)

n

n mod 5



Modular Arithmetic

−8 ≡ 7 (mod 3) ?

Yes, because 3 | ( – 8 – 7)
–8= –5(3)+7



Recall
(1) p ⇒ ¬z assumption

(2) z ∧ (p ∨ r) assumption

(3) ¬ q assumption

(4) z Specialization (2)

(5) ¬ p Modus Tollens (1,4)

(6) ¬ p ∨ q Generalization (5)

∴  p⇒q Definition of Implication Equivalence
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Direct Proof
Prove: for all integers a, b, and c, if a | b and b | c, then a | c.

a,b,c ∈ Z

a | b

b | cWe must show: a | c

In other words, we must prove ∃ k ∈ Z, c = ak by definition of divisibility.

Since a | b, we know ∃ r ∈ Z, b = ar

Since b | c, we know ∃ s ∈ Z, c = bs

Recall we must show c = ak for some k.

Let us substitute the value for b = ar in c = bs: c = (ar)s.

By associativity, we can state: c = a(rs).

Since r & s are integers, rs is an integer by the closure property of addition over Z.

Therefore, we have shown that c = ak where k = rs and c is therefore divisible by a.



Direct Proof
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Substitution (4,5)

(7)  s ∈ Z, c = a(rs) Associativity (6)

(8)  (rs) ∈ Z Since r, s ∈ Z & closure of *

(9) a | c By definition of divisibility, since c can be written in terms of a * some 

integer k (7,8)
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Direct Proof

Prove: (∀ x ∈ Z)[ if x is even, then 3x+7 is odd]

Assuming x ∈ Z ∧ x is even, we must show 3x + 7 is odd.

In other words, we must show (∃ k ∈ Z)[3x+7 = 2k + 1].

If x is even, (∃ s ∈ Z)[x = 2s].

Let us rewrite: 3x+7 = 3(2s) + 7 = 6s + 7

6s + 7 = 6s + 6 + 1 = (6s + 6) + 1 = 2(3s + 3) + 1.

Therefore, if (3s + 3) is an integer, then 3x + 7 = 2k + 1 where k = (3s + 3). 

We know 3s + 3 is an integer because s is an integer and +, * are closed on Z.

Therefore, 3x + 7 is odd because it can be written as 2(3s+3) + 1.


