Discrete Structures

Number Theory/ Direct proofs 9/20/2022

Topics

- Set operator review
- Closure
- Parity
- Divisibility
- Primes
- Mod
- Direct Proofs

Set Review: Identify the operator

 ${1,2,3}$?₀ ${1,3,4} = {2}$ ${a,b,c}$?₀ ${1,4} = {a,b,c}$ ${1,2,3}$ $?$ ₁ ${1,3,4} = {1,2,3,4}$ ${a,b,c}$?₁ ${1,4} = {1,a,b,c,4}$ $\{1,2,3\}$?₂ $\{1,3,4\} = \{1,3\}$ ${a,b,c}$? ${1,4} =$ {}

Set Review: Identify the operator

 ${1,2,3} - {1,3,4} = {2}$

 ${a,b,c} - {1,4} = {a,b,c}$

 $\overline{\{1,2,3\}} \cup \{1,3,4\} = \{1,2,3,4\}$

 $\{a,b,c\} \cup \{1,4\} = \{1,a,b,c,4\}$

 $\{1,2,3\} \cap \{1,3,4\} = \{1,3\}$

 ${a,b,c} \cap {1,4} = \{\}$

- Z is closed under addition.
- Z is closed under negation.
- Z is closed under subtraction.
- N is closed under addition.
- N is not closed under subtraction.
- N is not closed under negation.
- R is not closed under square root⁺.
- R^+ is closed under square root⁺.

- Z is closed under addition.
- Z is closed under negation.
- Z is closed under subtraction.
- N is closed under addition.
- N is not closed under subtraction.
- N is *not* closed under negation.
- R is not closed under square root⁺.
- R^+ is closed under square root⁺.

Does the result of applying the operator ever result in a value outside the domain?

 Yes ⇔ not closed.

 $No \Leftrightarrow closed.$

Z is closed under addition. $\forall x,y \in Z$, $(x + y) \in Z$ Z is closed under negation. $\forall x \in \mathbb{Z}$, $\exists x \in \mathbb{Z}$ Z is closed under subtraction. $\forall x,y \in Z$, $(x - y) \in Z$ N is closed under addition. $\forall x,y \in N$, $(x + y) \in N$ N is *not* closed under subtraction. 1, $5 \in N$, $(1 - 5) \notin N$ N is *not* closed under negation. $5 \in N$, $(-5) \notin N$ R is not closed under square root⁺. $-2 \in R$, sqrt(-2) $\notin R$ R^+ is closed under square root⁺.

In this class we may assume

- Laws of algebra
- Equality:
	- *A* = *B* ⇔ *B* = *A*
	- *A* = *B* ∧ *B* = *C* ⇒ *A* = *C*
- Substitution:
	- If *A* = B, you may substitute *B* wherever there is *A*.
- that there is no integer between 0 and 1
- that the set of all integers is closed under
	- addition,
	- subtraction,
	- multiplication

Property of an integer being even or odd.

Property of an integer being even or odd.

Examples:

 $127:$

 $354:$

999:

 $-192:$

Property of an integer being even or odd.

Examples:

127: odd

354: even

999: odd

 -192 : even

x is even iff there is some integer *k* such that *x*=2*k*

x is odd iff there is some integer *k* such that *x=*2*k*+1

- ∀ *x* ∈ *Z*, EVEN(*x*) ⇔ ∃ *k* ∈ Z, *x* = 2*k*
- $∀ x ∈ Z$, $ODD(x) ↔ ∃ k ∈ Z$, $x = 2k + 1$

∀ *x* ∈ *Z*, EVEN(*x*) ⇔ ∃ *k* ∈ Z, *x* = 2*k* $∀ x ∈ Z$, $ODD(x) ↔ ∃ k ∈ Z$, $x = 2k + 1$

Property of an integer being even or odd.

Examples:

 $127 =$

 $354 =$

 $999 =$

 $-192 =$

∀ *x* ∈ *Z*, EVEN(*x*) ⇔ ∃ *k* ∈ Z, *x* = 2*k* $∀ x ∈ Z$, $ODD(x) ↔ ∃ k ∈ Z$, $x = 2k + 1$

Property of an integer being even or odd.

Examples:

- $127 = 2(63) + 1$
- $354 = 2(177)$

 $999 = 2(499) + 1$

 $-192 = 2(-96)$

 $8 = 2(4)$

 $9 = 2(4) + 1$

 $-7 = 2(-4) + 1$

0, odd or even?

 $0 = 2(0)$

 \forall a,b \in Z, EVEN(6a²b)?

 $6a^2b = 2(3a^2b)$

 $∀ a,b ∈ Z, ODD(10a + 8b + 1)?$

 $2(5a + 4b) + 1$

∀ *x* ∈ *Z*, EVEN(*x*) ⇔ ∃ *k* ∈ Z, *x* = 2*k* $∀ x ∈ Z$, $ODD(x) ↔ ∃ k ∈ Z$, $x = 2k + 1$

Is every integer either odd or even?

- 5|15 because 5(3)=15
- 3|10 is false, because there is no integer z such that $3z=10$

If $n,d \in \mathbb{Z}$ then n **is divisible by** *d* iff $n = d$ times some integer and $d \neq 0$.

d | *n*

∀ *n*,*d* ∈ *Z*

 $(d | n)$ ⇔ $(∃ k ∈ Z, n = dk ∧ d ≠ 0)$

Equivalent statements:

n is divisible by *d*

d | *n*

n is a multiple of *d*

d is a factor of *n*

d is a divisor of *n*

d divides *n*

d ∤ *n* is read "*d* does not divide *n*"

- a. Is 21 divisible by 3?
	- a. Yes, $21 = 3(7)$
- b. Does 5 divide 40?
	- b. Yes, $40 = 5(8)$
- c. Does 7 | 42?
	- c. Yes, $42 = 7(6)$
- d. Is 32 a multiple of -16? d. Yes, $32 = (-16)(-2)$
- e. Is 6 a factor of 54?
	- e. Yes, $54 = 6(9)$
- f. \overline{Is} 7 a factor of -7?
	- f. Yes, $-7 = 7(-1)$

If $k \in Z^+$, $k \mid 0$?

Yes, $0 = k(0)$

Prime

An integer *n* is **prime** if, and only if, $n > 1$ and \forall positive integers *r* and *s*, if $n = rs$, then either *r* or *s* equals *n*.

An integer *n* is **composite** if, and only if, $n > 1$ and $n = rs$ for some integers *r* and **s** with 1 < *r* < *n* and 1 < *s* < *n*.

 $∀ n∈ Z, n>1$

 $PRIME(n) \Leftrightarrow \forall r, s \in \mathbb{Z}^+,$ $(n = rs) \Rightarrow (r = 1 \land s = n) \lor (r = n \land s = 1)$ COMPOSITE $(n) \Leftrightarrow \exists r, s \in \mathbb{Z}^+, (n = rs) \wedge (1 < r < n) \wedge (1 < s < n)$

Primes (informal)

An integer > 1 is **prime** iff its only positive factors are 1 and itself.

An integer > 1 not prime is **composite**.

NOTE:

∀ *x* ∈ Z, *x* ≤ 1 ⇒ *¬PRIME*(*x*) ∧ ¬COMPOSITE(*x*)

Prime Examples

13 is prime. Only factors are 1, 13.

51 is composite. $17(3) = 51$

 $5 \mod 3 = 2$

 $4 \text{ mod } 4 = 0$

12 $mod\ 5 = 2$

 $7 \text{ mod } 5 = 2$

 -17 *mod* $5 = 3$ because $-17 = -4(5) + 3$

x mod $m = r$ $x = km + r$, where *k* is an integer \wedge 0 ≤ *r* < *m*

"7 is congruent (equivalent) to 2 modulo 5" ⁷ *≡* ² (mod 5) ⇔ ⁵ | (⁷ - ²) 2 **≡** 7 (mod 5) ⇔ 5 | (2 - 7)

m ≡ n (mod *d*) ⇔ *d* | (*m* - *n*)

 $-8 \equiv 7 \pmod{3}$?

Yes, because $3 \mid (-8 - 7)$ $-8=-5(3)+7$

Recall

$$
\therefore \qquad p \Rightarrow q
$$

Recall

Prove: for all integers *a*, *b*, and *c*, if *a* | *b* and *b* | *c*, then *a* | *c*. We must show: $a \mid c$

In other words, we must prove $\exists k \in \mathbb{Z}$, $c = ak$ by definition of divisibility.

```
Since a \mid b, we know \exists r \in \mathbb{Z}, b = ar
```

```
Since b \mid c, we know \exists s \in \mathbb{Z}, c = bs
```
Recall we must show *c* = *ak* for some *k*.

Let us substitute the value for $b = ar$ in $c = bs$: $c = (ar)s$.

By associativity, we can state: $c = a$ (*rs*).

Since *r* & *s* are integers, *rs* is an integer by the closure property of addition over *Z*.

Therefore, we have shown that $c = ak$ where $k = rs$ and c is therefore divisible by a.

Prove: for all integers *a*, *b*, and *c*, if *a* | *b* and *b* | *c*, then *a* | *c*.

Prove: for all integers *a*, *b*, and *c*, if *a* | *b* and *b* | *c*, then *a* | *c*.

(3) *b | c* Assumption

Prove: for all integers *a*, *b*, and *c*, if *a* | *b* and *b* | *c*, then *a* | *c*.

Prove: for all integers \overline{a} , \overline{b} , and \overline{c} , if \overline{a} \overline{b} and \overline{b} \overline{c} , then \overline{a} \overline{c} .

Prove: for all integers *a*, *b*, and *c*, if *a* | *b* and *b* | *c*, then *a* | *c*.

Prove: for all integers *a*, *b*, and *c*, if *a* | *b* and *b* | *c*, then *a* | *c*.

(7) $s \in 7$, $c = a$ (*rs*) Associativity (6)

integer $K(7,0)$

Prove: for all integers *a*, *b*, and *c*, if *a* | *b* and *b* | *c*, then *a* | *c*.

Prove: for all integers *a*, *b*, and *c*, if *a* | *b* and *b* | *c*, then *a* | *c*.

Prove: $(\forall x \in Z)$ [if *x* is even, then $3x+7$ is odd] Assuming $x \in Z \wedge x$ is even, we must show $3x + 7$ is odd. In other words, we must show $(\exists k \in \mathbb{Z})[3x+7] = 2k + 1$. If x is even, $(\exists s \in Z)[x = 2s]$. Let us rewrite: $3x+7 = 3(2s) + 7 = 6s + 7$ $6s + 7 = 6s + 6 + 1 = (6s + 6) + 1 = 2(3s + 3) + 1.$ Therefore, if $(3s + 3)$ is an integer, then $3x + 7 = 2k + 1$ where $k = (3s + 3)$.

We know $3s + 3$ is an integer because s is an integer and $+$, $*$ are closed on Z.

Therefore, $3x + 7$ is odd because it can be written as $2(3s+3) + 1$.