Discrete Structures

Sets & Quantifiers 9/15/2022

Redistribution in whole or in part prohibited

Universal Quantifier

 \forall = "for every," "for each," "for any," "given any," or "for all."

Existential Quantifier

 \exists = "there exists"

Uniqueness Quantifier (less common)

 $\exists ! = "there exists a unique", "There is exactly one"$

 \forall human beings x, x is mortal

Predicate

In grammar, everything that isn't the subject

Predicate

Rebecca is a student at UMD.

P(x) = x is a student at UMD.

GT(x,y) = x is greater than y.

Predicate

sentence that contains a finite number of variables and becomes a statement when specific values are substituted for the variables.

Domain

set of all values that may be substituted in place of the variable.

Predicate Domains

P(x) = x is a student at UMD.

GT(x,y) = x is greater than y.

Predicate Domains

P(x) : x is under 10 feet tall

P(me)

P(IRB)

P(my dog)

Quantified Statement Examples

All vertebrates have spines.

P(x) = x has a spine. $\forall x \in \{vertebrates\}, P(x)$

 $\forall x \in \{vertebrates\}, HASSPINE(x) \\ \forall x \in \{vertebrates\}, x has a spine$

You *may* see these written:

 $(\forall x \in \{vertebrates\})[P(x)]$

Quantified Statement Example

For every problem, there is a solution.

 $\forall p \in \{\text{problems}\}, \exists s \in \{\text{solutions}\} \text{ s.t. SOLVED}(p,s)$

Quantified Statement Example

For every problem, there is a solution.

 $\forall p \in \{\text{problems}\}, \exists s \in \{\text{solutions}\} \text{ s.t. SOLVED}(p,s)$

 \neg (For every problem, there is a solution.)

 \equiv

 \exists at least one problem with no solution.

 $\neg(\forall p \in \{\text{problems}\}, \exists s \in \{\text{solutions}\} \text{ s.t. SOLVED}(p,s))$

 $\exists p \in \{\text{problems}\}, \neg(\exists s \in \{\text{solutions}\} \text{ s.t. SOLVED}(p,s))$

All mathematicians wear glasses.

 $\forall m \in \{mathematicians\}, GLASSES(m)$

 \neg (All mathematicians wear glasses)

≡

There exists at least one mathematician who doesn't wear glasses.

All mathematicians wear glasses.

 $\forall m \in \{mathematicians\}, GLASSES(m)$

 $\neg (\forall m \in \{\text{mathematicians}\}, \text{GLASSES}(m)) \\ \equiv$

 $\exists m \in \{mathematicians\}, \neg GLASSES(m)$

- $\neg(\forall x \in D, Q(x))$
- \equiv
- $\exists x \in D, \neg Q(x)$

 $\neg(\exists \ x \in D, Q(x))$

≡

 $\forall x \in D, \neg Q(x)$

To prove:

"There does not exist a person taller than 10 feet". $\neg(\exists x \in H, GTTENFEETTALL(x))$

You must prove:

"Every person is not taller than 10 feet"

 $\forall x \in H, \neg GTTENFEETTALL(x)$

- $\neg(\exists b \in \{\text{penguins}\}, FLY(b))$
- \equiv
- $\forall b \in \{\text{penguins}\}, \neg FLY(b)$

 $\neg(\forall p \in \{\text{problems}\}, \exists s \in \{\text{solutions}\} \text{ s.t. SOLVED}(p,s))$

 $\exists p \in \{\text{problems}\}, \neg(\exists s \in \{\text{solutions}\} \text{ s.t. SOLVED}(p,s))$

 \neg For every problem, there is a solution.

≡

 \neg ($\forall p \in \{\text{problems}\}, \exists s \in \{\text{solutions}\} \text{ s.t. SOLVED}(p,s)$)

\equiv

∃ p ∈ {problems}, ¬(∃ s ∈ {solutions} s.t. SOLVED(p,s)) ≡

 $\exists p \in \{\text{problems}\}, (\forall s \in \{\text{solutions}\}, \neg \text{SOLVED}(p,s))$

CAREFUL with quantifiers

∀,∃vs"For all x in D, there exists y in F"vsExample:

"There exists y in F, s.t. for all x in D"

∃,∀

 $(\forall x \in N, \exists y \in N)[x < y]$ vs $(\exists y \in N, \forall x \in N)[x < y]$

"For all nats, \exists a nat greater" vs " \exists a nat s.t. It is greater than all others"

TRUE

FALSE

Sets

A set is a collection of elements.

- Order doesn't matter.
- Appearing multiple times in a set is same as once.
- *MEMBERSHIP* is what matters.

Example Sets

{1, 2, 3}

{USA, Canada, Mexico}

{•, •, •, •, •) } {1, 2, 3, ..., 100}

Set Notation

- $x \in S$ means that x "is an element of" S
- x ∉ S means that x "is NOT an element of" S

Practice Sets

Let

 $A = \{1, 2, 3\}$ B = {3, 1, 2} C = {1, 1, 2, 3, 3, 3}

What are the elements of A, B, and C?

 $Is \{0\} = 0?$

How many elements are in the set {1, {1}}?

For each nonnegative integer n, let $U_n = \{n, -n\}$. Find U_1, U_2 , and U_0

$$U_1 = \{1, -1\}, U_2 = \{-2, 2\} U_0 = \{0, -0\} = \{0\}$$

Popular Sets

Set of Natural Numbers. i.e. {0,1,2,3...}

Set of Integers. i.e. {...,-3,-2,-1,0,1,2,3...}

Set of all rational numbers i.e. p/q s.t. $p,q \in Z \land q \neq 0$

Set of Real Numbers .

{}

Empty set AKA "null set"

Elements in this set?

{ Ø, {} }

 $\set{\emptyset, \{\emptyset\}}$

Popular Sets

Popular sets slightly modified

 \mathbf{R}^+

Znonneg

Which set(s)?

Set Builder Notation

 $\{x \in S \mid P(x)\}$

 $\{x \in R \mid -2 < x < 5\}$ $\{x \in Z \mid -2 < x < 5\}$ $\{x \in Z \mid -2 < x < 5\}$

Set Builder Notation

 $\{x \in S \mid P(x)\}$

 $\{x \mid x \in R \land -2 < x < 5\}$ $\{x \mid x \in R \land -2 < x < 5\}$ $\{x \mid x \in R \land -2 < x < 5\}$ $\{x \mid x \in R \land -2 < x < 5\}$

Intervals

$[1,2] = \{x \in R \mid 1 \le x \le 2\}$

$[1,3) = \{x \in R \mid 1 \le x < 3\}$

Note: [1,2]≠{1,2}

Practice Intervals

Interval	Set
(a,b)	
[a,b)	
[a, ∞)	
(-∞, b)	
(-∞, ∞)	

Practice Intervals

Interval	Set
(a,b)	${x \in R \mid a < x < b}$
[a,b)	$\{x \in R \mid a \le x < b\}$
[a, ∞)	$\{x \in R \mid x \ge a\}$
(-∞, b)	$\{x \in R \mid x < b\}$
(-∞, ∞)	R

Subsets

A *is a subset of* B if all the elements in A are in B $A \subseteq B$

Examples:

 $Z \subseteq Q$

 $\{1,2,3\} \subseteq \{2,4,1,3,0\}$ $\{\} \subseteq \{2,4,1,3,0\}$

 $\{1,2\} \subseteq \{2,1\}$

Subsets

 $A \subseteq B$

$A \subseteq B \Leftrightarrow (x \in A \Rightarrow x \in B)$

Subsets and Set Equality

$A = B \Leftrightarrow ((A \subseteq B) \land (B \subseteq A))$

 $\{1,2,3\} \subseteq \{1,3,2\}$ $\{1,3,2\} \subseteq \{1,2,3\}$

Not a Subset

A ⊈ B means: there is at least one element x such that $x \in A \land x \notin B$.

 $\{1,2,3,4\} \not\subseteq \{1,2,3\}$

{a,b} ⊈ {a}

Proper Subset

A is a proper subset of B *if, and only if,* every element of A is in B but there is at least one element of B that is not in A.

$A \subset B$

$A \subset B \Leftrightarrow ((x \in A \Rightarrow x \in B) \land (\exists y \in B, y \notin A))$

Example: $Z \subset R$ $\{1,2\} \subset \{1,2,3\}$

Proper Subset Analogy

 $A \subset B \approx a < b$ $A \subseteq B \approx a \le b$

 $A = Z^+$ $B = \{n \in Z \mid 0 \le n \le 100\}$ $C = \{100, 200, 300, 400, 500\}$

- 1. $B \subseteq A$
- 2. $C \subset A$
- 3. $\exists x s.t. x \in C \land x \in B$
- 4. C ⊆ B
- 5. C⊆C

 $A = Z^+$ $B = \{n \in Z \mid 0 \le n \le 100\}$ $C = \{100, 200, 300, 400, 500\}$

- 1. $B \subseteq A$ FALSE
- 2. $C \subset A$ TRUE
- 3. $\exists x \text{ s.t. } x \in C \land x \in B$ **TRUE**
- 4. $C \subseteq B$ FALSE
- 5. $C \subseteq C$ TRUE

- a. $2 \in \{1,2,3\}$
- b. $\{2\} \in \{1,2,3\}$
- c. $2 \subseteq \{1,2,3\}$
- d. $\{2\} \subseteq \{1,2,3\}$
- e. $\{2\} \subseteq \{\{1\}, \{2\}\}$
- f. $\{2\} \in \{\{1\}, \{2\}\}$

- a. $2 \in \{1,2,3\}$ TRUE
- b. $\{2\} \in \{1,2,3\}$
- c. $2 \subseteq \{1,2,3\}$
- d. {2} ⊆ {1,2,3} TRUE
- e. $\{2\} \subseteq \{\{1\}, \{2\}\}$
- f. $\{2\} \in \{\{1\},\{2\}\}$ TRUE

Set Union

The union of A and B, denoted A \cup B, is the set of all elements that are in at least

one of A or B.

Set Union

Examples:

 $\{1,2,3\} \cup \{6,4\} =$

 $\{1,2,3\} \cup \{1,2,3,4\} =$

 $\{\} \cup \{6,4\} =$

Set Union

Examples:

 $\{1,2,3\} \cup \{6,4\} = \{1,2,3,4,6\}$ $\{1,2,3\} \cup \{1,2,3,4\} = \{1,2,3,4\}$ $\{\} \cup \{6,4\} = \{4,6\}$

The intersection of A and B, denoted $A \cap B$, is the set of all elements that are common to both A and B.

Examples:

```
\{1,2,3,4,5\} \cap \{4,5,6,7,8\} =
```

 $\{1,2,3\} \cap \{4,5\} =$

 $\{1,2,3,4\} \cap \{\} =$

Examples:

 $\{1,2,3,4,5\} \cap \{4,5,6,7,8\} = \{4,5\}$ $\{1,2,3\} \cap \{4,5\} = \{\}$ $\{1,2,3,4\} \cap \{\} = \{\}$

$\{1,2,3,4,5\} \cap \{4,5,6,7,8\} = \{4,5\}$

```
\{1,2,3\} \cap \{4,5\} = \{\}\{1,2,3,4\} \cap \{\} = \{\}
```

Two sets are called **disjoint** *if, and only if,* they have no elements in common.

A and B are disjoint $\Leftrightarrow A \cap B = \{\}$

Set Complement

Context = *universal set* U

The complement of A, denoted A^c, or A' is the set of all elements in U that are not in A.

 $A' = \{ x \in U \mid x \notin A \}$

Example:

 $U=Z: \{evens\}^c = \{odds\}$

Set Difference

The difference of B minus A (or relative complement of A in B), denoted B - A, is the set of all elements that are in B and not A.

 $B-A = \{x \mid (x \in B) \land (x \notin A)\}$

Sometimes also written: B/A

Set Difference

Examples:

 $\{1,2,3,4\}-\{3,4\}=$

 $\{1,2,3,4\}-\{3,4,5,6\}=$

{3,4,5,6}-{1,2,3,4}=

a,b,c - =

Set Difference

Examples:

 $\{1,2,3,4\} - \{3,4\} = \{1,2\}$ $\{1,2,3,4\} - \{3,4,5,6\} = \{1,2\}$ $\{3,4,5,6\} - \{1,2,3,4\} = \{5,6\}$

 ${a,b,c} - {} = {a,b,c}$

More Practice

 $U = \{a,b,c,d,e,f,g\}$ $A = \{a,c,e,g\}$ $B = \{d,e,f,g\}$

Find:

 $A \cup B =$

 $A \cap B =$

B - A =

 $A^c =$

More Practice

 $U = \{a,b,c,d,e,f,g\}$ $A = \{a,c,e,g\}$ $B = \{d,e,f,g\}$

Find:

 $A \cup B = \{a, c, d, e, f, g\}$

 $A \cap B = \{e,g\}$

 $B - A = \{ d, f \}$

 $A^{c} = \{b,d,f\}$

Critical Thinking

 $(A \cup B = A) \Rightarrow (A = \overline{B})$

 $(A \cap B = A) \Rightarrow (A = B)$

Summary

- Quantifiers
 - > ∀
 - E
- Sets
 - Notations
 - List elements
 - Common sets
 - Common sets modified
 - Set builder
 - Subset
 - Equality
 - Proper subset
 - Union
 - Intersection
 - subtraction/difference
 - Disjoint sets

Copyright 3 2001 United Feature Syndicate, Inc. Redistribution in whole or in part prohibited