
CMSC 330: Organization of Programming
Languages

Tail Recursion

CMSC330 Spring 2024

Factorial

fact n = n * fact (n-1) n>0
1 n=0

let rec fact n =
 if n = 0 then 1
 else n * fact (n-1)

fact 4 = 24

Factorial

fact 3 = 3 * fact 2
 = 3 * 2 * fact 1
 = 3 * 2 * 1 * fact 0
 = 3 * 2 * 1 * 1
 = 3 * 2 * 1
 = 3 * 2
 = 6

Stack

fact 0 1

fact 1 1 1 * fact 0

fact 2 2 2 * fact 1

fact 3 3 3 * fact 2

fact n = n * fact (n-1) n>0
1 n=0

Stack Overflow

fact 1000000

Yet Another Factorial

aux x a =

fact n = aux n 1

aux (x-1) x*a x>0
a x=0

let fact n =
 let rec aux x a =
 if x = 0 then a
 else aux (x-1) x*a
 in
 aux n 1

Stack

6

1,6 aux 1 6

2,3 aux 2 3

fact 3 3,1 aux 3 1

Yet Another Factorial

fact 3 = aux 3 1
 = aux 2 3
 = aux 1 6
 = 6

aux x a =

fact n = aux n 1

aux (x-1) x*a x>0
a x=0

No Stack!
No need to push a new frame on each call
• The result of the evaluation is just the result

of the recursive call – nothing to remember
• So: Reuse the current frame

Tail Recursion

• Whenever a function’s result is completely computed by
its recursive call, it is called tail recursive
– Its “tail” – the last thing it does – is recursive

• Tail recursive functions can be implemented without
requiring a stack frame for each call
– No intermediate variables need to be saved, so the compiler

overwrites them

• Typical pattern is to use an accumulator to build up the
result, and return it in the base case

Compare fact and aux

final result is the result of the recursive call

Waits for recursive call’s result to compute final result

let rec fact n =
 if n = 0 then 1
 else n * fact (n-1)

let fact n =
 let rec aux x acc =
 if x = 1 then acc
 else aux (x-1) (acc*x)
 in
 aux n 1

let sumlist l =
 let rec helper l a =
 match l with
 [] -> a 0
 | (x::xs) -> helper xs (x+a)
 in
helper l 0

Exercise: Finish Tail-recursive Version
let rec sumlist l =
 match l with
 [] -> 0
 | (x::xs) -> (sumlist xs) + x

Tail-recursive version:

Quiz #1

True/false: map is tail-recursive.

let rec map f = function
 [] -> []
| (h::t) -> (f h)::(map f t)

A. True
B. False

Quiz #1

True/false: map is tail-recursive.

A. True
B. False

let rec map f = function
 [] -> []
| (h::t) -> (f h)::(map f t)

Quiz #2

True/false: fold is tail-recursive

A. True
B. False

let rec fold f a = function
 [] -> a
| (h::t) -> fold f (f a h) t

Quiz #2

True/false: fold is tail-recursive

A. True
B. False

let rec fold f a = function
 [] -> a
| (h::t) -> fold f (f a h) t

Quiz #3

True/false: fold_right is tail-recursive

A. True
B. False

let rec fold_right f l a =
 match l with
 [] -> a
 | (h::t) -> f h (fold_right f t a)

Quiz #3

True/false: fold_right is tail-recursive

A. True
B. False

let rec fold_right f l a =
 match l with
 [] -> a
 | (h::t) -> f h (fold_right f t a)

Tail Recursion is Important

• Pushing a call frame for each recursive call when
operating on a list is dangerous
– One stack frame for each list element
– Big list = stack overflow!

• So: favor tail recursion when inputs could be large (i.e.,
recursion could be deep). E.g.,
– Prefer List.fold_left to List.fold_right

• Library documentation should indicate tail recursion, or not
– Convert recursive functions to be tail recursive

Quiz #4

True/false: this is a tail-recursive map

A. True
B. False

let map f l =
 let rec helper l a =
 match l with
 [] -> a
 | h::t -> helper t ((f h)::a)
 in helper l []

Quiz #4

True/false: this is a tail-recursive map

A. True
B.False (elements are reversed)

let map f l =
 let rec helper l a =
 match l with
 [] -> a
 | h::t -> helper t ((f h)::a)
 in helper l []

A Tail Recursive map

let map f l =
 let rec helper l a =
 match l with
 [] -> a
 | h::t -> helper t ((f h)::a)
 in rev (helper l [])

Could instead change (f h)::a to be a@(f h)
Q: Why is the above implementation a better choice?
A: O(n) running time, not O(n2) (where n is length of list)

