CMSC 330: Organization of Programming
Languages

Tail Recursion

CMSC330 Spring 2024

Factorial

1 =0

fact n ='[:n * fact (n-1) n>0

let rec fact n =
if n =0 then 1
else n * fact (n-1)

fact 4 24

Factorial

1 =0
fact n ='[n * fact (n-1) n>0
fact 3 = 3 * fact 2

=3 * 2 * fact 1 fact 0
= 3 * 2 * 1 * fact O fact 1
=3 * 2 * 1 * fact 2
=3 * 2 *] fact 3
= 3 * 2

6

Stack

1 * fact O
2 * fact 1
3 * fact 2

Stack Overflow

let rec fact n = if n = @ then 1 else n *x fact (n-1);;
val fact : int -> int = <fun>
fact 1000000 ' ;

Stack overflow during evaluation |(looping recursion?).

Yet Another Factorial

a =0
aux x a ={:aux (x-1) x*a x>0
fact n = aux n 1
let fact n =

let rec aux x a =
if x = 0 then a
else aux (x-1) x*a
in

aux n 1

fact 3

Stack

aux 1 6
aux 2 3

aux 3 1

Yet Another Factorial

a =0
aux X a8 =1 aux (x-1) x*a x>0

fact n aux n 1

fact 3 = aux 3 1 No Stack!

= aux 2 3 No need to push a new frame on each call
= aux 1 6 » The result of the evaluation is just the result
= 6 of the recursive call — nothing to remember

 So: Reuse the current frame

Tail Recursion

 Whenever a function’s result is completely computed by
Its recursive call, it is called tail recursive
— Its “tail” — the last thing it does — is recursive

 Tail recursive functions can be implemented without
requiring a stack frame for each call

— No intermediate variables need to be saved, so the compiler
overwrites them

« Typical pattern is to use an accumulator to build up the
result, and return it in the base case

Compare fact and aux

let rec fact n =
if n =0 then 1
else n * fact (n-1)

Waits for recursive call’s result to compute final result

let fact n =
let rec aux x acc
if x = 1 then acc
else aux (x-1) (acc*x)
in
aux n 1

final result is the result of the recursive call

Exercise: Finish Tail-recursive Version

let rec sumlist 1 =
match 1 with
[1] >0
| (x::xs) -> (sumlist xs) + x

Tail-recursive version:

let sumlist 1 =
let rec helper 1 a
match 1 with
[] -> a
| (x::xs) -> helper xs (x+a)
in
helper 1 0

Quiz #1

True/false: map is tail-recursive.

let rec map £ = function

[1 -> [1
| (h::t) -> (£ h)::(map £ t)

A. True
B. False

Quiz #1

True/false: map is tail-recursive.

let rec map £ = function

[1 -> [1
| (h::t) -> (£ h)::(map £ t)

A. True
B. False

Quiz #2

True/false: fold is tail-recursive

let rec fold £ a = function
[] -> a
| (h::t) -> fold £ (£f a h) t

A. True
B. False

Quiz #2

True/false: fold is tail-recursive

let rec fold £ a = function
[] -> a
| (h::t) -> fold £ (£ a h) t

A. True
B. False

Quiz #3

True/false: fold_right is tail-recursive

let rec fold right £ 1 a =
match 1 with
[] -> a
| (h::t) -> £ h (fold right f t a)

A. True
B. False

Quiz #3

True/false: fold_right is tail-recursive

let rec fold right £ 1 a =
match 1 with
[] -> a
| (h::t) -> £ h (fold right f t a)

A. True
B. False

Tall Recursion is Important

« Pushing a call frame for each recursive call when
operating on a list is dangerous
— One stack frame for each list element
— Big list = stack overflow!

« So: favor tail recursion when inputs could be large (i.e.,
recursion could be deep). E.g.,
— Prefer List.fold lefttoList.fold right
« Library documentation should indicate tail recursion, or not
— Convert recursive functions to be tail recursive

Quiz #4

True/false: this is a tail-recursive map

let map £ 1 =
let rec helper 1 a =
match 1 with
[] -> a
| h::t -> helper t ((f h)::a)
in helper 1 []

A. True
B. False

Quiz #4

True/false: this is a tail-recursive map

let map £ 1 =
let rec helper 1 a =
match 1 with
[] -> a
| h::t -> helper t ((f h)::a)
in helper 1 []

A. True
B. False (elements are reversed)

A Tail Recursive map

let map £ 1 =
let rec helper 1 a =
match 1 with
[] -> a
| h::t -> helper t ((f h)::a)
in rev (helper 1 [])

Could instead change (£ h) : :a tobe aR (£ h)

Q: Why is the above implementation a better choice?
A: O (n) running time, not O (n?) (where n is length of list)

