
CMSC 330: Organization of Programming

Languages

Closures and Iterators

In Rust

CMSC330 Fall 2024

Using Closures/Functions Locally

• Rust has local functions, and closures

• OCaml local functions/closures

fn moveit(l:bool,x:i32) -> i32 {

 let left = |x| x - 1;
 fn right(x:i32) -> i32 { x+1 };

 if l { left(x) }

 else { right(x) }

}

let moveit l x =

 let left = fun x -> x - 1 in
 let right = fun x -> x + 1 in

 if l then left x

 else right x

Closure (may

have an
environment)

Local function

(no
environment)

CMSC330 Fall 2024

Limits of Type Inference

• Rust infers non-polymorphic types

• OCaml infers polymorphic types

• More details on closures at the end, including polymorphism

– Now for something (not so completely) different

let id = |x| x;

let x = id(1); //infers x:i32

let y = id("hi"); //fails: &str ≠ i32

let f = fun x -> x in (* ‘a -> ‘a *)

let x = id 1 in

let y = id "hi" in (* OK *) …

CMSC330 Fall 2024

Iteration using the Iterator Trait

• Recall an earlier example:

• The iter() method returns an iterator, i.e., a value with the

Iterator trait

CMSC330 Fall 2024

let a = vec![10, 20, 30, 40, 50];

for e in a.iter() {

 println!("the value is: {}", e);

}

trait Iterator {

 type Item; //this is an associated type

 fn next(&mut self) -> Option<Self::Item>;

 … //default method impls

}

Unpacking the for syntax

• Each call to next advances the iterator

– So it has to be mut

• calls to next produce immutable references to the values

in a

– else may call into_iter or iter_mut on a to get different

sorts of references

CMSC330 Fall 2024

let a = vec![10, 20];

let mut iter = a.iter();

assert_eq!(iter.next(), Some(&10));

assert_eq!(iter.next(), Some(&20));

assert_eq!(iter.next(), None);

Iterator Adaptors

• We can make one iterator from another

– An iterator is consumed as it used; it is lazy

• This is a pattern for higher order programming

– i.map(f) produces an iterator returning f(e) for each of i’s

elements e

– i.filter(f) produces iterator for i’s elements e such that

f(e) == true

– i.collect() converts an iterator into a vector

– i.fold(a,f) is like OCaml’s fold_right

• fold_right f a v where v is the list corresponding to i

– zip, sum, …

CMSC330 Fall 2024

Examples

let a = vec![10,20];

let i = a.iter();

let j = i.map(|x| x+1).collect();

//[11,21]

let k = a.iter().fold(0,|a,x| x-a); //10

for e in a.iter().filter(|&&x| x == 10) {

 println!("{}",e);

} //prints 10

CMSC330 Fall 2024

Quiz 1: Output of the following code

fn main(){

 let a = [0, 1, 2, 3, 4, 5];

 let mut iter2 = a.iter().map(|x| 2 * x);

 iter2.next();

 let t2 = iter2.next();

 println!("{:?}", t2)

}

A. Some(0)

B. Some(1)

C. Some(2)

D. Some(4)

CMSC330 Fall 2024

Quiz 1: Output of the following code

fn main(){

 let a = [0, 1, 2, 3, 4, 5];

 let mut iter2 = a.iter().map(|x| 2 * x);

 iter2.next();

 let t2 = iter2.next();

 println!("{:?}", t2)

}

A. Some(0)

B. Some(1)

C. Some(2)

D. Some(4)

CMSC330 Fall 2024

Iterator Notes

• You can make your own iterators too

– Implement the Iterator trait

– Several examples in the Rust Book

• Iterators perform extremely well

– Better that for loops with explicit indexes!

– This is because Rust aggressively optimizes the code it

generates, e.g., by unrolling the iteration loop

– So feel free to program using map, fold, zip, etc.

CMSC330 Fall 2024

Iter Example

CMSC330 Fall 2024

struct Fibonacci {
 curr: u32,
 next: u32,

}

impl Iterator for Fibonacci {
 type Item = u32;

 fn next(&mut self) -> Option<Self::Item> {

 let new_next = self.curr + self.next;
 self.curr = self.next;
 self.next = new_next;

 if self.curr < 100 {
 Some(self.curr)

 }else{
 return None

 }
 }

}
fn fibonacci() -> Fibonacci {
 Fibonacci { curr: 0, next: 1 }

}

fn main() {
 println!("The first 15 terms of the Fibonacci seq:");
 for i in fibonacci().take(15) {
 print!("{},", i);
 }

 println!("\nfrom 5th, the next 3 terms of the Fibonacci seq:");
 for i in fibonacci().skip(4).take(3){
 print!("{},", i);
 }
 println!()
}

Back to Closures: Passing as Arguments

• Each closure has a distinct type

– Even if two closures have the same signature, their types are

considered different

• Such types are called generative types

• To specify the type of a closure (for a function parameter,

say), use generics with trait bounds

– Fn t (will describe later)

– FnMut t

– FnOnce t

• Functions (defined with fn f…) implement the above trait

bounds too
CMSC330 Fall 2024

Using the Fn Trait

– But cannot write

• Can also use function trait bounds in struct,

enum, etc. definitions

fn app_int<T>(f:T,x:i32) -> i32

 where T:Fn(i32) -> i32

{

 f(x)}

fn main() {

println!(“{}”,app_int((|x| x-1),1));

}

Trait bound on T to

specify type of f

fn app_int(f:(i32) -> i32,x:i32) -> i32

{ f(x) }

CMSC330 Fall 2024

Using the Fn Trait Polymorphically

fn app<T,U,W>(f:T,x:U) -> W

 where T:Fn(U) -> W

{

 f(x)

}

fn main() {

println!("{}",app((|x| x-1),1));//i32

 let s = String::from("hi ");

 println!("{}",app(|x| x+"there",s));//String

}

CMSC330 Fall 2024

Capturing Free Variables

– Note: fails if equal_to_x defined as a local function

• Local functions do not have an environment

• Complication: What if x is owned?

– Capturing it could move it or borrow (mut or immut)

– Use various FnX traits to specify what to do

fn main() {

let x = 4;

let equal_to_x = |z| z == x;

let y = 4;

assert!(equal_to_x(y))

} // true

Closure

env
captures x

CMSC330 Fall 2024

Distinguishing Fn Trait Bounds

• FnOnce t (where t is a func type)

– Consumes the variables it captures from its enclosing scope (i.e.,

moves or copies them)

– Thus can only be called once

• The call consumes ownership

• FnMut t

– Borrows captured variables mutably

• Fn t

– Borrows captured variables immutably, or copies

• equal_to_x copied x due to its Copy trait

– Try this bound first; follow the compiler’s advice if it doesn’t work

CMSC330 Fall 2024

Example use of FnOnce

let x = String::from("hi");

let add_x = |z| x+z; //captures x; is FnOnce

println!("x = {}",x); //fails

let s = add_x(" there");//consumes closure

let t = add_x(" joe");//fails, add_x consumed

CMSC330 Fall 2024

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 3: Using Closures/Functions Locally
	Slide 4: Limits of Type Inference
	Slide 5: Iteration using the Iterator Trait
	Slide 6: Unpacking the for syntax
	Slide 7: Iterator Adaptors
	Slide 8: Examples
	Slide 9: Quiz 1: Output of the following code
	Slide 10: Quiz 1: Output of the following code
	Slide 11: Iterator Notes
	Slide 12: Iter Example
	Slide 13: Back to Closures: Passing as Arguments
	Slide 14: Using the Fn Trait
	Slide 15: Using the Fn Trait Polymorphically
	Slide 16: Capturing Free Variables
	Slide 17: Distinguishing Fn Trait Bounds
	Slide 18: Example use of FnOnce

