CMSC 330
 Organization of Programming Languages

OCaml

Higher Order Functions

Map \& Fold

Passing Functions as Arguments

You can pass functions as arguments

```
let plus3 x = x + 3 (* int -> int *)
```

let twice $\mathrm{f} \mathbf{z}=\mathrm{f}(\mathrm{f} \mathbf{z})$
(* ('a->'a) -> 'a -> 'a *)
twice plus3 5 = 11

The Map Function

map is a higher order function

$$
\begin{aligned}
\operatorname{map} & f[v 1 ; \mathrm{v} 2 ; \ldots ; \mathrm{vn}] \\
& =[f \mathrm{v} 1 ; \mathrm{f} \\
& \mathrm{v} 2 ; \ldots ; f \mathrm{vn}]
\end{aligned}
$$

let add_one $\mathrm{x}=\mathrm{x}+1$
let negate $\mathbf{x}=-x$
map add_one [1; 2; 3] = [2; 3; 4]
map negate $[9 ;-5 ; 0]=[-9 ; 5 ; 0]$

How can we implement Map?

let rec addlall $1=$ match 1 with
[] -> []
| h::t ->
(add_one h) : : addlall t
let rec negall $1=$ match 1 with
[] -> []
| h::t ->
(neg h): : negall t
let rec map $f 1=$
match l with
[] -> []
| h::t -> (f h)::(map ft)

Implementing map

```
let rec map f l =
    match l with
        [] -> []
    | h::t -> (f h)::(map f t)
```

-What is the type of map?

Implementing map

let rec map f l = match 1 with
[] -> []
| h::t -> (f h): (map f f$)$
-What is the type of map?

map, as a cartoon

map cook $[\%, \infty, \infty, N]=$

map is included in the standard List module, i.e., as List.map

Quiz 4: What does this evaluate to?

$$
\operatorname{map}(f u n \times x+4) \quad[1 ; 2 ; 3]
$$

> A. $[1.0 ; 2.0 ; 3.0]$
> B. $[4.0 ; 8.0 ; 12.0]$
C. Error
D. [4; 8; 12]

Quiz 4: What does this evaluate to?

$$
\operatorname{map}(f u n x->x * 4)[1 ; 2 ; 3]
$$

A. [1.0; 2.0; 3.0]
B. [4.0; 8.0; 12.0]
C. Error
D. [4; 8; 12]

Quiz 5: Which function to use?

map ??? [1; 0; 3] = [true; false; true]
A. fun $x->$ true
B. fun $\mathbf{x}->\mathbf{x}=0$
C. fun $x \rightarrow x \quad!=0$
D. fun $x \rightarrow x=(x \quad!=0)$

Quiz 5: Which function to use?

map ??? [1; 0; 3] = [true; false; true]
A. fun $x->$ true
B. fun $x \rightarrow x=0$
C. fun $x->x \quad!=0$

fold

Two Recursive Functions

Sum a list of ints
let rec sum $1=$
match l with
[] $\rightarrow 0$
$\mid h:: t->h+(s u m h)$
\# sum [1;2;3;4];

- : int = 10

Concatenate a list of strings

let rec concat $1=$ match l with
[] -> ""
| h::t $\rightarrow \mathrm{h} \wedge$ (concat t)

```
# concat ["a";"b";"c"];;
- : string = "abc"
```


Notice Anything Similar?

Sum a list of ints
let rec sum $\overline{1}=$
match l with
[] $->0$
| h::t -> (+) h (sum t)

Concatenate a list of strings
let rec concat $1=$ match l with
[] -> ""
| h::t -> (^) h (concat t)

The fold Function

Sum a list of ints
Concatenate a list of strings:
let rec sum lst $=$
let rec concat lst $=$ match l with
[] -> 0 [] -> ""
| h::t -> (+) h (sum t)
let rec fold f a $1=$
match l with
[] -> a
| h::t -> f h (foldr fat)
let sum $1=$ fold (+) 0 lst
let concat $1=$ fold (^) "" lst

What does fold do?

$$
\begin{aligned}
& \text { let rec fold f a } 1= \\
& \text { match l with } \\
& \quad[]->\text { a } \\
& \quad \mid \mathrm{h}:: \mathrm{t} \rightarrow \text { fold } f(f \text { a h) } t
\end{aligned}
$$

let add a $\mathrm{x}=\mathrm{a}+\mathrm{x}$
fold add 0
[1; 2; 3] \rightarrow
fold add (add 0 1) [2; 3] \rightarrow
fold add 1
$[2 ; 3] \rightarrow$
fold add (add 1 2) [3] \rightarrow
fold add 3
[3] \rightarrow
fold add (add 3 3) [] \rightarrow
fold add 6
[] \rightarrow
We just built the sum function!

Using Fold to Build Reverse

```
let rec fold f a l =
    match l with
        [] -> a
    | h::t -> fold f (f a h) t
```

- Let's build the reverse function with fold!
let prepend a $\mathrm{x}=\mathrm{x}:$:a
fold prepend [] [1; 2; 3; 4] \rightarrow
fold prepend [1] [2; 3; 4] \rightarrow
fold prepend [2; 1] [3; 4] \rightarrow
fold prepend [3; 2; 1] [4] \rightarrow
fold prepend [4; 3; 2; 1] [] \rightarrow
[4; 3; 2; 1]

List.fold_left

$$
\begin{aligned}
& \text { let rec fold fall}= \\
& \text { match l with } \\
& \quad[]->a \\
& \mid h:: t->\text { fold } f(f a h) t
\end{aligned}
$$

- fold f

[v1; v2; ...; vn]
$=$ fold f
(f $\vee \vee \vee 1)$
[v2; ...; vn]
$=f o l d f(f(f \vee v 1) \quad v 2) \quad[\ldots ; v n]$
= ...
$=f(f(f(f \vee v 1) \quad v 2)$...) vn
- e.g., fold add 0 [1;2;3;4] = add (add (add (add 0 1) 2) 3) $4=10$

> List.fold_right
> let rec fold f a $1=$ match 1 with
> [] $->a$
> | h::t -> f h (fold fat)

```
fold_right f [v1; v2; ...; vn] v =
    f v1 (f v2 (...(f vn v)...))
```

fold_right add [1;2;3;4] 0 = add 1 (add 2 (add 3 (add 40$)$)) $=10$

Quiz 6: What does this evaluate to?

let $f \times y=(i f x>y$ then x else $y)$ in fold f 0 [3;4;2]
A. 0
B. true
C. 2
D. 4

Quiz 6: What does this evaluate to?

let $\mathrm{f} x \mathrm{y}=$ if $\mathrm{x}>\mathrm{y}$ then x else y in fold $f 0$ [3;4;2]
A. 0
B. true
C. 2
D. 4

Quiz 7: What does this evaluate to?

fold (fun a y-> a-y) 0 [3;4;2]
A. -9
B. -1
C. $[2 ; 4 ; 3]$
D. 9

Quiz 7: What does this evaluate to?

fold (fun a y-> a-y) 0 [3;4;2]
A. -9
B. -1
C. $[2 ; 4 ; 3]$
D. 9

Type of fold_left, fold_right

let rec fold_left f a $1=$ match 1 with
[] -> a
| h::t -> fold_left f (f a h) t

Type of fold_left, fold_right

let rec fold_left f a $1=$ match 1 with
[] $->\mathrm{a}$
| h::t -> fold_left $f(f a h) t$

Type of fold_left, fold_right

Summary: Left-to-right vs. right-to-left

fold_left $f v[v 1 ; v 2 ; \ldots ; v n]=$

$$
f(f(f(f \vee v 1) \quad v 2) \ldots) \quad v n
$$

fold_right f [v1; v2;...; vn] $v=$

$$
f \text { v1 }(f \text { v2 }(\ldots(f \text { vn v) ... }))
$$

fold_left (fun x y $->\mathbf{x}-\mathrm{y}) 0[1 ; 2 ; 3]=-6$ since ((0-1)-2)-3) $=-6$
fold_right [1;2;3] (fun $x y->x-y) 0=2$ since 1-(2-(3-0)) $=2$

When to use one or the other?

- Many problems lend themselves to fold_right
- But it does present a performance disadvantage
- The recursion builds of a deep stack: One stack frame for each recursive call of fold_right
- An optimization called tail recursion permits optimizing fold_left so that it uses no stack at all
- We will see how this works in a later lecture!

Fold Example 1: Product of an int list

let mul $x y=x * y ;$
let lst $=$ [1; 2; 3; 4; 5];
fold mul 1 lst

- : int $=120$

Wrong accumulator
fold mul 0 lst; ;

- : int = 0

Example 2: Count elements of a list satisfying a condition

```
let countif p l =
fold (fun counter element ->
    if p element then counter+1
    else counter) 0 l ;;
countif (fun x -> x > 0) [30;-1;45;100;0];;
- : int = 3
```


Fold Example 3: Collect even numbers in the list

$\begin{aligned} \text { let } f \operatorname{acc} y= & \text { if }(y \bmod 2)=0 \text { then } y:: a c c \\ & \text { else acc; } ;\end{aligned}$
fold f [] [1;2;3;4;5;6];

- : int list $=$ [6; 4; 2] Reversed

Fold Example 4: Find the maximum from a list

Combining map and fold

Idea: map a list to another list, and then fold over it to compute the final result

- Basis of the famous "map/reduce" framework from Google, since these operations can be parallelized

```
let countone l =
    fold (fun a h -> if h=1 then a+1 else a) 0 l
let countones ss =
    let counts = map countone ss in
    fold (fun a c -> a+c) O counts
countones [[1;0;1]; [0;0]; [1;1]] = 4
countones [[1;0]; []; [0;0]; [1]] = 2
```


Sum of sublists

Given a list of int lists, compute the sum of each int list, and return them as list.

$$
\text { let sumList }=\text { map (fold (+) } 0 \text {); ; }
$$

For example:

$$
\begin{aligned}
& \text { sumList }[[1 ; 2 ; 3] ;[4] ;[5 ; 6 ; 7]] \\
& -: \text { int list }=[6 ; 4 ; 18]
\end{aligned}
$$

