
CMSC 330

Organization of Programming Languages

OCaml

Higher Order Functions

1
CMSC330 Fall 2024

2

Anonymous Functions

Use fun to make a function with no name

(fun x -> x + 3) 5 fun x -> x + 3

Parameter Body
(in which parameter x

 is bound)

= 8

Anonymous Functions

Syntax

• fun x1 … xn -> e

Evaluation

• An anonymous function is an expression

• In fact, it is a value.

Type checking

• (fun x1 … xn -> e) : (t1 -> … -> tn -> u)

 when e : u under assumptions x1 : t1, …, xn : tn.

➢ (Same rule as let f x1 … xn = e)

3

A. Error

B. 2

C. 1

D. 0

4

Quiz 1: What does this evaluate to?

let y = (fun x -> x+1) 2 in

(fun z -> z-1) y

A. Error

B. 2

C. 1

D. 0

5

Quiz 1: What does this evaluate to?

let y = (fun x -> x+1) 2 in

(fun z -> z-1) y

A. Type error

B. int

C. int -> int -> int

D. 'a -> 'b -> 'a

6

(fun x y -> x) 2 3

Quiz 2: What is this expression’s type ?

A. Type error

B. int

C. int -> int -> int

D. 'a -> 'b -> 'a

7

(fun x y -> x) 2 3

Quiz 2: What is this expression’s type ?

8

Functions and Binding

Functions are first-class, so you can bind them to other

names as you like

let f x = x + 3;;

let g = f;;

g 5

= 8

9

Example Shorthands

let for functions is a syntactic shorthand

let f x = body is semantically equivalent to

let f = fun x -> body

let next x = x + 1

• Short for let next = fun x -> x + 1

let plus x y = x + y

• Short for let plus = fun x y -> x + y

A. 0

B. 1

C. 2

D. Error

10

Quiz 3: What does this evaluate to?

let f = fun x -> 0 in

let g = f in

let h = fun y -> g (y+1) in

h 1

A. 0

B. 1

C. 2

D. Error

11

Quiz 3: What does this evaluate to?

let f = fun x -> 0 in

let g = f in

let h = fun y -> g (y+1)

h 1

12

Nested Functions

(* Filter the odd numbers from a list *)

let filter lst =

 let rec aux l =

 match l with

 |[] -> []

 |h::t-> if h mod 2 <> 0 then h::aux t

 else aux t

 in

 aux lst

filter [1;2;3;4;5;6] (* int list = [1; 3; 5] *)

13

Passing Functions as Arguments

You can pass functions as arguments

let plus3 x = x + 3 (* int -> int *)

let twice f z = f (f z)

(* ('a->'a) -> 'a -> 'a *)

 twice plus3 5 = 11

	Slide 1: CMSC 330 Organization of Programming Languages
	Slide 2: Anonymous Functions
	Slide 3: Anonymous Functions
	Slide 4: Quiz 1: What does this evaluate to?
	Slide 5: Quiz 1: What does this evaluate to?
	Slide 6: Quiz 2: What is this expression’s type ?
	Slide 7: Quiz 2: What is this expression’s type ?
	Slide 8: Functions and Binding
	Slide 9: Example Shorthands
	Slide 10: Quiz 3: What does this evaluate to?
	Slide 11: Quiz 3: What does this evaluate to?
	Slide 12: Nested Functions
	Slide 13: Passing Functions as Arguments

