
CMSC 330: Organization of Programming

Languages

Lets, Tuples, Records

1CMSC330 Fall 2024

2

Let Expressions

• Syntax

– let x = e1 in e2

– x is a bound variable

– e1 is the binding expression

– e2 is the body expression

• let expressions bind local variables

– Different from let definitions, which are at the top-level

Let Expressions

• Syntax

– let x = e1 in e2

• Evaluation

– e1 ⇒ v1

– e2{v1/x}

3

let z = 3+4 in 3*z

21

Let Expressions

• Syntax

– let x = e1 in e2

• Type checking

– If e1 : t1 and

– If assuming x : t1 implies e2 : t

– Then (let x = e1 in e2) : t

4

Example
What is the type of let z = 3+4 in 3*z ?

• 3+4 : int
• Assuming z : int, we have 3*z : int

• So the type of let z = 3+4 in 3*z is int

5

Let Definitions vs. Let Expressions

• At the top-level, we write

– let x = e;; (* no in e2 part *)

– This is called a let definition, not a let expression

• Because it doesn’t, itself, evaluate to anything

• Omitting in means “from now on”:
let pi = 3.14;;

(* pi is now bound in the rest of the top-level scope *)

6

Let Expressions: Scope

• In let x = e1 in e2, var x is not visible outside of e2

 let pi = 3.14 in pi *. 3.0 *. 3.0;;

 print_float pi;;

bind pi (only) in body of let
(which is pi *. 3.0 *. 3.0)error: pi not bound

{

 float pi = 3.14;

 pi * 3.0 * 3.0;

}

pi; /* pi unbound! */

7

Examples – Scope of Let bindings

• x;; (* Unbound value x *)

• let x = 1 in x + 1;; (* 2 *)

• let x = x in x + 1;; (* Unbound value x *)

• (let x = 1 in x + 1);; x;;(* Unbound value x *)

• let x = 4 in (let x = x + 1 in x) ;; (* 5 *)

8

Nested Let Expressions

Similar scoping possibilities C and Java

let res =

 (let area =

 (let pi = 3.14 in

 let r = 3.0 in

 pi *. r *. r) in

 area /. 2.0);;

float res;

{ float area;

 { float pi = 3.14

 float r = 3.0;

 area = pi * r * r;

 }

 res = area / 2.0;

}

9

Let Expressions in Functions

• You can use let inside of functions for local vars

let area d =

 let pi = 3.14 in

 let r = d /. 2.0 in

 pi *. r *. r

10

Shadowing Names

• Shadowing is rebinding a name in an inner scope to have

a different meaning

– May or may not be allowed by the language

C

int i;

void f(float i) {

 {

 char *i = NULL;

 ...

 }

}

let x = 10 in

 let z =

 let x = 20 in

 x*2 in

 x+z. (* 50 *)

Shadowing, by the Semantics

• What if e2 is also a let for x ?

– Substitution will stop at the e2 of a shadowing x

11

Example
let x = 3+4 in let x = 3*x in x+1

- let x = 7 in let x = 3*x in x+1

- let x = 3*7 in x+1

- let x = 21 in x+1

- 21+1

- 22

Will not be substituted,

since it is shadowed

by the inner let

Quiz 1: What does this evaluate to?

A. 4

B. 6

C. 8

D. Error

12

let x = 2 in

let y = x + x in

y * x

Quiz 1: What does this evaluate to?

A. 4

B. 6

C. 8

D. Error

13

let x = 2 in

let y = x + x in

y * x

14

Quiz 2: What does this evaluate to?

A. 3

B. 2

C. true

D. false

let x = 5 in

x = 3

15

Quiz 2: What does this evaluate to?

let x = 2 in

x = 3

A. 3

B. 2

C. true

D. false

This expression is

checking whether
x is equal to 3

A. 8

B. 11

C. 13

D. 14

let y = 3 in

let x = y+2 in

let y = 6 in

x+y

16

Quiz 3: What does this evaluate to?

A. 8

B. 11

C. 13

D. 14

let y = 3 in

let x = y+2 in

let y = 6 in

x+y

17

Quiz 3: What does this evaluate to?

18

Tuples

• Constructed using (e1, …, en)

• Deconstructed using pattern matching
– Patterns involve parens and commas, e.g., (p1, p2, …)

• Tuples are similar to C structs

– But without field labels

– Allocated on the heap

• Tuples can be heterogenous

– Unlike lists, which must be homogenous

– (1, ["string1";"string2"]) is a valid tuple

19

Tuple Types

• Tuple types use * to separate components

– Type joins types of its components

• Examples
– (1, 2) :

– (1, "string", 3.5) :

– (1, ["a"; "b"], 'c') :

– [(1,2)] :

– [(1, 2); (3, 4)] :

– [(1,2); (1,2,3)] :

20

Tuple Types

• Tuple types use * to separate components

– Type joins types of its components

• Examples
– (1, 2) :

– (1, "string", 3.5) :

– (1, ["a"; "b"], 'c') :

– [(1,2)] :

– [(1, 2); (3, 4)] :

– [(1,2); (1,2,3)] :

int * int

int * string * float

int * string list * char

(int * int) list

(int * int) list

error

Because the first list element has
type int * int, but the second has

type int * int * int – list elements
must all be of the same type

21

Pattern Matching Tuples
let plus3 t =

 match t with

 (x, y, z) -> x + y + z;;

plus3 : int*int*int -> int = <fun>

let plus3’ (x, y, z) = x + y + z;;

plusThree’ : int*int*int -> int = <fun>

22

Tuples Are A Fixed Size

• This OCaml definition
– let foo x = match x with

 (a, b) -> a + b

| (a, b, c) -> a + b + c

 has a type error. Why?

• Tuples of different size have different types
– (a, b) has type: 'a * 'b

– (a, b, c) has type: 'a * 'b * 'c

A. (3,0)

B. (2,0)

C. 3

D. type error

let get a b = (a+b,0) in

get 1 2

23

Quiz 4: What does this evaluate to?

A. (3,0)

B. (2,0)

C. 3

D. type error

let get a b = (a+b,0) in

get 1 2

24

Quiz 4: What does this evaluate to?

A. 3

B. type error

C. 2

D. 1

let get (a,b) y = a+y in

get (2,1) 1

25

Quiz 5: What does this evaluate to?

A. 3

B. type error

C. 2

D. 1

26

Quiz 5: What does this evaluate to?

let get (a,b) y = a+y in

get (2,1) 1

27

Records

• Records: identify elements by name
– Elements of a tuple are identified by position

• Define a record type before defining record values

• Define a record value

type date = { month: string; day: int; year: int }

let today = { day=16; year=2017; month=“f”^“eb” };;

today : date = { day=16; year=2017; month=“feb” };;

28

Destructing Records

• Access by field name or pattern matching

type date = { month: string; day: int; year: int }

let today = { day=16; year=2017; month=“feb” };;

today.month;; (* feb *)

let { year } = today in (* binds year to 2017 *)

let { month=_; day=d } = today in

…

A. point -> int list

B. int -> int list

C. point -> point list

D. point -> int list list

type point = {x:int; y:int}

let shift { x = px } = [px]::[]

29

Quiz 6: What is the type of shift?

A. point -> int list

B. int -> int list

C. point -> point list

D. point -> int list list

type point = {x:int; y:int}

let shift { x = px } = [px]::[]

30

Quiz 6: What is the type of shift?

	Slide 1: CMSC 330: Organization of Programming Languages
	Slide 2: Let Expressions
	Slide 3: Let Expressions
	Slide 4: Let Expressions
	Slide 5: Let Definitions vs. Let Expressions
	Slide 6: Let Expressions: Scope
	Slide 7: Examples – Scope of Let bindings
	Slide 8: Nested Let Expressions
	Slide 9: Let Expressions in Functions
	Slide 10: Shadowing Names
	Slide 11: Shadowing, by the Semantics
	Slide 12: Quiz 1: What does this evaluate to?
	Slide 13: Quiz 1: What does this evaluate to?
	Slide 14: Quiz 2: What does this evaluate to?
	Slide 15: Quiz 2: What does this evaluate to?
	Slide 16: Quiz 3: What does this evaluate to?
	Slide 17: Quiz 3: What does this evaluate to?
	Slide 18: Tuples
	Slide 19: Tuple Types
	Slide 20: Tuple Types
	Slide 21: Pattern Matching Tuples
	Slide 22: Tuples Are A Fixed Size
	Slide 23: Quiz 4: What does this evaluate to?
	Slide 24: Quiz 4: What does this evaluate to?
	Slide 25: Quiz 5: What does this evaluate to?
	Slide 26: Quiz 5: What does this evaluate to?
	Slide 27: Records
	Slide 28: Destructing Records
	Slide 29: Quiz 6: What is the type of shift?
	Slide 30: Quiz 6: What is the type of shift?

