
Let bindings

1

We use let to bind name (identifier) to a value:

 # let x = 100;; (* x is an immutable binding 100 *)

 val x : int = 100

Since functions are values, just like ints or strings, let is

also used to define functions:

 #let add x y = x + y;;

 val add : int -> int -> int

Type Annotations

• OCaml compiler infers the types. But type inference is tricky. It

gives vague error messages. We can annotate types manually.

• The syntax (e : t) asserts that “e has type t”.

 let (x : int) = 3

 let z = (x : int) + 5

• Define functions’ parameter and return types

 let add (x:int) (y:int):int = x + y

 let id x = x (* 'a → ‘a *)

 let id (x:int) = x (* int → int *)

• Checked by compiler: Very useful for debugging.

2

3

Lists in OCaml

• The basic data structure in OCaml

– Lists can be of arbitrary length

• Implemented as a linked data structure

– Lists must be homogeneous

• All elements have the same type

• Operations

– Construct lists

– Destruct them via pattern matching

4

Constructing Lists: Syntax

Syntax

• [] is the empty list (pronounced “nil”)

• e1::e2 prepends element e1 to list e2

– e1 is the head, e2 is the tail

• [e1;e2;…;en] is syntactic sugar for e1::e2::…::en::[]

Examples
3::[] (* [3] *)

2::(3::[]) (* [2; 3] *)

[1; 2; 3] (* 1::(2::(3::[])) *)

Constructing Lists: Evaluation

Evaluation

• [] is a value

• [e1;…;en] evalues to a list of [v1;…;vn]

– Where

– e1 ⇒ v1,

– ...,

– en ⇒ vn

5

6

Constructing Lists: Examples

let y = [1; 1+1; 1+1+1] ;;

val y : int list = [1; 2; 3]

let x = 4::y ;;

val x : int list = [4; 1; 2; 3]

let z = 5::y ;;

val z : int list = [5; 1; 2; 3]

let m = “hello”::”bob”::[];;

val m : string list = [“hello”; “bob”]

7

Constructing Lists: Typing

Nil:

[]: 'a list (* empty list *)

Cons:

If e1 : t and e2 : t list then e1::e2 : t list

8

Examples

let x = [1;"world"] ;;

This expression has type string but an expression was

expected of type int

let m = [[1];[2;3]];;

val y : int list list = [[1]; [2; 3]]

let y = 0::[1;2;3] ;;

val y : int list = [0; 1; 2; 3]

let w = [1;2]::y ;;

This expression has type int list but is here used with

type int list list

9

Lists in Ocaml are Linked

[1;2;3] is represented as:

head tail

10

Lists of Lists

• Lists can be nested arbitrarily

– Example: [[9; 10; 11]; [5; 4; 3; 2]]

• Type int list list, also written as (int list) list

11

Lists are Immutable

• No way to mutate (change) an element of a list

• Instead, build up new lists out of old, e.g., using ::

42 31
x

let x = [1;2;3;4]

let y = 5::x

let z = 6::x

5
y

6
z

A. array

B. list

C. float list

D. int list

12

Quiz 1

[1.0; 2.0; 3.0; 4.0]

What is the type of the following expression?

A. array

B. list

C. float list

D. int list

[1.0; 2.0; 3.0; 4.0]

13

What is the type of the following expression?

Quiz 1

14

Quiz 2

What is the type of the following expression?

10::[20]

A. int

B. int list

C. int list list

D. error

15

Quiz 2

A. int

B. int list

C. int list list

D. error

What is the type of the following expression?

10::[20]

16

Quiz 3

What is the type of the following definition?

A. string -> string

B. string list

C. string list -> string list

D. string -> string list

let f a = “umd”::[a]

17

Quiz 3

A. string -> string

B. string list

C. string list -> string list

D. string -> string list

What is the type of the following definition?

let f a = “umd”::[a]

18

Pattern Matching

• To pull lists apart, use the match construct

• Syntax

match e with

| p1 -> e1

| …

| pn -> en

• p1...pn are patterns

• e1...en are branch expressions

19

Pattern Matching Example

let is_empty l =

 match l with

 [] -> true

 | (h::t) -> false

Example runs

• is_empty [] (* true *)

• is_empty [1] (* false *)

• is_empty [1;2](* false *)

20

Pattern Matching Example (cont.)

let hd l =

 match l with

 (h::t) -> h

• Example runs

– hd [1;2;3](* 1 *)

– hd [2;3] (* 2 *)

– hd [3] (* 3 *)

– hd [] (* Exception: Match_failure *)

21

Pattern Matching Example (cont.)

let neg n =

 match n with

 |true-> false

 |_-> true

• An underscore _ is a wildcard pattern. It matches

anything

let is_empty l =

 match l with

 [] -> true

 |_-> false

22

Quiz 4

To what does the following expression evaluate?

A. []

B. [0]

C. [1]

D. [2;3]

match [1;2;3] with

 [] -> [0]

| h::t -> t

23

Quiz 4

To what does the following expression evaluate?

A. []

B. [0]

C. [1]

D. [2;3]

match [1;2;3] with

 [] -> [0]

| h::t -> t

24

"Deep" pattern matching

• a::b matches lists with at least one element

• a::[] matches lists with exactly one element

• a::b::[] matches lists with exactly two elements

• a::b::c::d matches lists with at least three elements

25

Quiz 5

To what does the following expression evaluate?

A. []

B. [0]

C. [1]

D. [2;3]

match [1;2;3] with

 | 1::[] -> [0]

 | _::_ -> [1]

 | 1::_::[] -> []

26

Quiz 5

To what does the following expression evaluate?

A. []

B. [0]

C. [1]

D. [2;3]

match [1;2;3] with

 | 1::[] -> [0]

 | _::_ -> [1]

 | 1::_::[] -> []

27

Pattern Matching – An Abbreviation

• let f p = e, where p is a pattern

– is shorthand for let f x = match x with p -> e

• Examples

– let hd (h::_) = h

– let tl (_::t) = t

• Useful if there’s only one acceptable input

28

Polymorphic Types

• The hd function works for any type of list
– hd [1; 2; 3] (* 1 *)

– hd ["a"; "b"; "c"] (* "a" *)

• OCaml gives such functions polymorphic types
– hd : 'a list -> ‘a

• These are basically generic types in Java

– 'a list is like List<T>

29

Examples Of Polymorphic Types

let tl (_::t) = t

tl [1; 2; 3];;

- : int list = [2; 3]

tl [1.0; 2.0];;

- : float list = [2.0]

(* tl : 'a list -> 'a list *)

30

Examples Of Polymorphic Types

let eq x y = (x = y)

•

• # eq 1 2;;

- : bool = false

eq “hello” “there”;;

- : bool = false

eq “hello” 1 -- type error

(* eq : 'a -> ’a -> bool *)

31

Quiz 6

What is the type of the following function?

A. ‘a -> ‘b -> int

B. ‘a -> ‘a -> bool

C. ‘a -> ‘a -> int

D. int

let f x y =

 if x = y then 1 else 0

32

Quiz 6

What is the type of the following function?

A. ‘a -> ‘b -> int

B. ‘a -> ‘a -> bool

C. ‘a -> ‘a -> int

D. int

let f x y =

 if x = y then 1 else 0

33

Missing Cases

• Exceptions for inputs that don’t match any pattern

– OCaml will warn you about non-exhaustive matches

• Example:

let hd l = match l with (h::_) -> h;;

Warning: this pattern-matching is not exhaustive.

Here is an example of a value that is not matched:

[]

hd [];;

Exception: Match_failure ("", 1, 11).

34

Pattern matching is AWESOME

1. You can’t forget a case

– Compiler issues inexhaustive pattern-match warning

2. You can’t duplicate a case

– Compiler issues unused match case warning

3. You can’t get an exception

– Can’t do something like List.hd []

4. Pattern matching leads to elegant, concise,

beautiful code

35

Lists and Recursion

• Lists have a recursive structure

– And so most functions over lists will be recursive

– This is just like an inductive definition

• The length of the empty list is zero

• The length of a nonempty list is 1 plus the length of the tail

– Type of length?
• ‘a list -> int

let rec length l = match l with

 [] -> 0

 | (_::t) -> 1 + (length t)

36

More Examples
• sum l (* sum of elts in l *)

let rec sum l = match l with

 [] -> 0

 | (x::xs) -> x + (sum xs)

• negate l (* negate elements in list *)

 let rec negate l = match l with

 [] -> []

 | (x::xs) -> (-x) :: (negate xs)

• last l (* last element of l *)

let rec last l = match l with

 [x] -> x

 | (x::xs) -> last xs

37

More Examples (cont.)

(* return a list containing all the elements in the list l

followed by all the elements in list m *)

• append l m

let rec append l m = match l with

 [] -> m

 | (x::xs) -> x::(append xs m)

• rev l (* reverse list; hint: use append *)

let rec rev l = match l with

 [] -> []

 | (x::xs) -> append (rev xs) (x::[])

• rev takes O(n2) time. Can you do better?

	Slide 1: Let bindings
	Slide 2: Type Annotations
	Slide 3: Lists in OCaml
	Slide 4: Constructing Lists: Syntax
	Slide 5: Constructing Lists: Evaluation
	Slide 6: Constructing Lists: Examples
	Slide 7: Constructing Lists: Typing
	Slide 8: Examples
	Slide 9: Lists in Ocaml are Linked
	Slide 10: Lists of Lists
	Slide 11: Lists are Immutable
	Slide 12: Quiz 1
	Slide 13: Quiz 1
	Slide 14: Quiz 2
	Slide 15: Quiz 2
	Slide 16: Quiz 3
	Slide 17: Quiz 3
	Slide 18: Pattern Matching
	Slide 19: Pattern Matching Example
	Slide 20: Pattern Matching Example (cont.)
	Slide 21: Pattern Matching Example (cont.)
	Slide 22: Quiz 4
	Slide 23: Quiz 4
	Slide 24: "Deep" pattern matching
	Slide 25: Quiz 5
	Slide 26: Quiz 5
	Slide 27: Pattern Matching – An Abbreviation
	Slide 28: Polymorphic Types
	Slide 29: Examples Of Polymorphic Types
	Slide 30: Examples Of Polymorphic Types
	Slide 31: Quiz 6
	Slide 32: Quiz 6
	Slide 33: Missing Cases
	Slide 34: Pattern matching is AWESOME
	Slide 35: Lists and Recursion
	Slide 36: More Examples
	Slide 37: More Examples (cont.)

