
CMSC330 - Organization of Programming Languages
Summer 2023 - Exam 1

CMSC330 Course Staff
University of Maryland

Department of Computer Science

Name:

UID:

I pledge on my honor that I have not given or received any unauthorized assistance on this assignment/examination

Signature:

Ground Rules

• You may use anything on the accompanying reference sheet anywhere on this exam

• Please write legibly. If we cannot read your answer you will not receive credit

• You may not leave the room or hand in your exam within the last 10 minutes of the exam

• If anything is unclear, ask a proctor. If you are still confused, write down your assumptions in the margin

Question Points
Q1 10
Q2 15
Q3 15
Q4 15
Q5 20
Q6 15
Q7 10

Total 100

1

Problem 1: Language Concepts [Total 10 pts]

True False
Any regular expression can be expressed as a Context Free Grammar T F

let f x = x 4 is an example of a higher order function T F

One could theoretically code project 1 in lambda calculus T F

All statically typed languages use explicit (manifest) typing T F

FSMs are a subset of Turing Machines in terms of computational power T F

Problem 2: Typing [Total 15 pts]

Write an expression of the following types in OCaml. You cannot use type annotations, and all pattern matching must be
exhaustive.

(a) string -> ’a -> string [2 pts]

(b) ’a -> ’a -> bool -> ’a [3 pts]

Given the following OCaml expressions, write down its type.

(c) fun a b -> let c = a = b in if c then 2 else 3 [2 pts]

(d) fun a b c d -> if a && let x = b > c in x then d + 1 else b [3 pts]

(e) Which of the following choices could be the type of the python lambda below? Select all that apply. [2 pts]

lambda x,y: x + y

A int -> int -> int B string -> int -> string C list -> list -> list D float -> int -> float

E None of the above

(f) Which of the following python lambdas could have the type of string list -> int list? Select all the apply. [3 pts]

A lambda x: [1,2] if x == ["hello"] else [0] B lambda x: [len(x[0])]

C lambda x: map(lambda y: len(y),x) D lambda x: len(x)

E None of the above

2

Problem 3: Regular Expressions [Total 15 pts]

(a) Which of the following strings are an exact match of the following Regular Expression? Mark all that apply. [5 pts]

ˆ[A-Z][a-z0-9]+: ([0-9]{3}|[CS330]+)$

A Major: CS B Age: 25 C Class: CS330 D Finitial: C E None

(b) Write a regular expression that accepts phone numbers of all the following formats and rejects everything else. You
may assume that any X can be any digit. [5 pts]

XXX-XXX-XXXX XXX-XXXXXXX XXXXXXXXXX (XXX)-XXX-XXXX (XXX)-XXXXXXX (XXX)XXXXXXX

(c) Write a regular expression that would accept all strings of odd length and have at least 1 lowercase vowel (a,e,i,o,u)
and reject anything else [5 pts]

Problem 4: Context Free Grammars [Total 15 pts]

Consider the following Grammars:

Grammar 1 Grammar 2 Grammar 3 Grammar 4
S -> AB

A -> aAa|a
B -> bBbb|ϵ

S -> ASB|a
A -> aA|a

B -> bbB|c

S -> Sc|AB
A -> aA|a

B -> bbB|b

S -> ASB|cScc|c
A -> aaA|a
B -> bbB|b

(a) Which grammars (of 1, 2, and 3) accept both "aabbbbc" and "aaabbcc"? Select all that apply. [4 pts]

1 Grammar 1 2 Grammar 2 3 Grammar 3 N None

(b) Ambiguity [6 pts]

Yes No
"aaabbb" is an ambiguous string in Grammar 1 Y N
"aaabbc" is an ambiguous string in Grammar 2 Y N
"aaabcc" is an ambiguous string in Grammar 3 Y N

(c) Which strings are accepted by Grammar 4? Select all that apply. [5 pts]

A aaacbbb B aaacbbbb C ccaaabbbbcc D cacacbbbb E None

3

Problem 5: Finite State Machines [Total 20 pts]

(a) Using the subset algorithm, convert the following NFA to a DFA, and fill in the blanks appropriately matching the DFA
provided with the right nodes and transitions. Only the blanks will be graded. [12 pts]

NFA: Scratch Space (if needed)

0

1 2

3 4

5

a

a

a

ϵ

c

b

ϵ

DFA:

S1

S2 S3

S4 S5

E1
E2

E3
E4

E5

E6

E7

S1: S2: S3: S4:

S5: E1: E2: E3:

E4: E5: E6: E7:

(b) Which of the following are the final states? Select all that apply [3 pts]

1 S1 2 S2 3 S3 4 S4 5 S5 N None

(c) Write a regex to describe the language of the above NFA [5 pts]

4

Problem 6: Lambda Calculus [Total 15 pts]

For the following questions perform a single β -reduction using eager (call by value) evaluation on the outermost expression.
If you cannot reduce it, write Beta Normal Form. You may not α-convert your final answer.

(a) (λy .y y) ((λx .y) (λy .x y)) [2 pts]

(b) (λx .λx .xx) (z (λa .a)) [3 pts]

For the following questions perform a single β -reduction using lazy (call by name) evaluation on the outermost expression.
If you cannot reduce it, write Beta Normal Form. You may not α-convert your final answer.

(c) (λy .y y) ((λx .y) (λy .x y)) [2 pts]

(d) (λx .λx .xx) (z (λa .a)) [3 pts]

(e) Which of the following is alpha equivalent to (λx .xλx .x y)? Select all that apply. [2 pts]

A (λz .zλx .z y) B (λy .yλx .x y) C (λz .zλx .x y) D (λx .xλy .y z) G None

(f) Convert the following to Beta Normal Form: (λz .λx .xz) (λy .y y)c [3 pts]

A c B (λx .x x)c C c (λy .y y) D λx .x (c c) E c c F Infinite Recursion G None

5

Problem 7: Python Programming [Total 10 pts]

(a) Write a function mur that has the same functionality of map, but uses reduce. [4 pts]

def mur (f , l s t) :
return reduce (___BLANK____)

#mur (lambda x : x + 1 , [1 , 2 , 3]) => [2 , 3 , 4]
#mur (lambda x : len (x) , [[1 , 2 , 3] , [4 , 5] , [6]]) => [3 , 2 , 1]
#mur (lambda x : x , [1 , 2 , 3]) => [1 , 2 , 3]

Blank:

(b) Write a function sumnum that takes in a formatted string and returns the sum of all the numbers found in that string. [6 pts]

#sumnum(" I have 2 apples and 30 oranges ") => 32
#sumnum(" There are no numbers here ") => 0
#sumnum(" I can have negatives l i k e −2 and −4 ") => −6

def sumnum(s) :

6

Cheat Sheet
Python
L i s t s
l s t = []
l s t = [1 , 2 , 3 , 4]
l s t [2] # returns 3
l s t [− 1] # returns 4
l s t [0] = 4 # l i s t becomes [4 , 2 , 3 , 4]
l s t [1 : 3] # returns [2 , 3]

L i s t funct ions
l s t = [1 , 2 , 3 , 4 , 5]
len (l s t) # returns 5
sum(l s t) # returns 15
l s t . append (6) # returns None . l s t i s now [1 , 2 , 3 , 4 , 5 , 6]
l s t . pop () # returns 6 . l s t i s now [1 , 2 , 3 , 4 , 5]

S t r i n g s
s t r i n g = " hel lo "
len (s t r i n g) # returns 5
s t r i n g [0] # returns h
s t r i n g [2 : 4] # returns l l

s t r i n g = " t h i s i s a sentence "
s t r i n g . s p l i t (" ")
returns [" t h i s " , " i s " , "a " , " sentence "]

Map and Reduce
map(function , l s t)
returns a map object corresponding to the
r e s u l t of c a l l i n g funct ion to each item in l s t
t y p i c a l l y needs to be cast as a l i s t

reduce (function , l s t , s t a r t)
returns a value that i s the combination of
a l l items in l s t . funct ion w i l l be used to
combine the items together , s t a r t i n g with
s tar t , and then going through each item
in the l i s t

regex in python
re . ful lmatch (pattern , s t r i n g)
returns a match object i f s t r i n g i s a
f u l l / exact match to s t r i n g .
returns None otherwise

re . search (pattern , s t r i n g)
returns a match object corresponding to
the f i r s t instance of pattern in s t r i n g .
returns None otherwise

re . f i n d a l l (pattern , s t r i n g)
returns a l l non− overlapping matches
of pattern in s t r i n g as a l i s t

match objects
m = re . search (" ([0 − 9] +) ([0 − 9] +) " , " 12 34 ")
m. groups () # returns (" 12 " , " 34 ")
returns a tuple of a l l th ings that were
captured with parenthesis

m. group (n) # m. group (1) = " 12 " , m. group (2) = " 34 "
returns the s t r i n g captured by the nth
set of parenthesis

Regex

* zero or more repetitions of the preceding character or group
+ one or more repetitions of the preceding character or group
? zero or one repetitions of the preceding character or group
. any character
r1 |r2 r1 or r2 (eg. a|b means ’a’ or ’b’)
[r1r2r3] r1 or r2 or r3 (eg. [abc] is ’a’ or ’b’ or ’c’)
[ˆr1] anything except r1 (eg. [ˆabc] is anything but an ’a’, ’b’, or ’c’)
[r1-r2] range specification (eg. [a-z] means any letter in the ASCII range of a-z)
{n} exactly n repetitions of the preceding character or group
{n,} at least n repetitions of the preceding character or group
{m,n} at least m and at most n repetitions of the preceding character or group
ˆ start of string
$ end of string
(r1) capture the pattern r1 and store it somewhere (match group in Python)
\d any digit, same as [0-9]
\s any space character like \n, \t, \r, \f, or space

7

NFA to DFA Algorithm (Subset Construction Algorithm)
NFA (input): (Σ,Q , q0, Fn ,σ), DFA (output): (Σ, R , r0, Fd ,σn)

R ← {}
r0 ← ϵ − closure(σ, q0)
while \ an unmarked state r ∈ R do

mark r
for all a ∈ Σ do

E ← move(σ, r , a)
e ← ϵ − closure(σ, E)
if e < R then

R ← R ∪ {e}
end if
σn ← σn ∪ {r , a, e}

end for
end while
Fd ← {r | \s ∈ r with s ∈ Fn }

Grammars
Regex Lambda Calc
R → ∅ e → x

| σ | λx .e
| ϵ | e e
| RR
| R |R
| R ∗

Lambda Calc Encodings
We will give you the encodings that you will need. They may or may not look like/include the following:

λx .λy .x = true
λx .λy .y = false
e1 e2 e3 = if e1 then e2 else e3

8

