CMSC330 - Organization of Programming Languages
Summer 2023 - Exam 1

CMS(C330 Course Staff
University of Maryland
Department of Computer Science

Name:

UID:

I pledge on my honor that | have not given or received any unauthorized assistance on this assignment/examination

Signature:

Ground Rules
« You may use anything on the accompanying reference sheet anywhere on this exam
+ Please write legibly. If we cannot read your answer you will not receive credit
+ You may not leave the room or hand in your exam within the last 10 minutes of the exam

« If anything is unclear, ask a proctor. If you are still confused, write down your assumptions in the margin

Question | Points

Q1 10
Q2 15
Q3 15
Q4 15
Qs 20
Q6 15
Q7 10

Total 100

Problem 1: Language Concepts [Total 10 pts]

-
=
S
o
2
—
[7]
[}

Any regular expression can be expressed as a Context Free Grammar
let f x = x 4isan example of a higher order function
One could theoretically code project 1 in lambda calculus

All statically typed languages use explicit (manifest) typing

CONCONONONC)
ONONONONCO

FSMs are a subset of Turing Machines in terms of computational power

Problem 2: Typing [Total 15 pts]

Write an expression of the following types in OCaml. You cannot use type annotations, and all pattern matching must be
exhaustive.

(@) string -> 'a -> string [2 pts]

(b) 'a -> 'a -> bool -> ’a [3 pts]

Given the following OCaml expressions, write down its type.

(c)fun a b -> let c = a =b in if c then 2 else 3 [2 pts]
(d)fun a bcd->if a & let x = b > c in x then d + 1 else b [3 pts]
(e) Which of the following choices could be the type of the python lambda below? Select all that apply. [2 pts]

lambda x,y: x + vy

@ int ->int -> int string -> int -> string @ list -> list -> list @ float -> int -> float
@ None of the above

(f) Which of the following python lambdas could have the type of string list -> int list? Select all the apply. [3 pts]

(A)lambda x: [1,2] if x == ["hello"] else [0] lambda x: [len(x[0])]

lambda x: map(lambda y: len(y),x) lambda x: len(x)
None of the above

Problem 3: Regular Expressions [Total 15 pts]

(a) Which of the following strings are an exact match of the following Regular Expression? Mark all that apply. [5 pts]

"[A-Z][a-z0-9]+: ([0-9]1{3}|[CS330]+)$

@ Major: CS G Age: 25 @ Class: CS330 @ Finitial: C @ None

(b) Write a regular expression that accepts phone numbers of all the following formats and rejects everything else. You
may assume that any X can be any digit. [5 pts]

XXX-XXX-XXXX XXX-XXXXXXX XXXXXXXXXX (XXX)-XXX-XXXX (XXX)-XXXXXXX (XXX)XXXXXXX

(c) Write a regular expression that would accept all strings of odd length and have at least 1 lowercase vowel (a,e,i,o0,u)
and reject anything else [5 pts]

Problem 4: Context Free Grammars [Total 15 pts]
Consider the following Grammars:
Grammar1 Grammar2 Grammar 3 Grammar 4
S->AB S->ASBla S->Sc|AB | S ->ASB|cScclc

A->aAala A->aAla A->aA|a A -> aaA|a
B ->bBbble B->bbB|c B->bbB|b| B->bbB|b
(a) Which grammars (of 1, 2, and 3) accept both "aabbbbc" and "aaabbcc"? Select all that apply. [4 pts]

@Grammam @Grammarz @Grammara @None

(b) Ambiguity [6 pts]

Yes No
"aaabbb" is an ambiguous string in Grammar 1 @
"aaabbc" is an ambiguous string in Grammar 2 @
"aaabcc" is an ambiguous string in Grammar 3 @

(c) Which strings are accepted by Grammar 4? Select all that apply. [5 pts]

@ aaachbb e aaacbbbb @ ccaaabbbbcc @ cacacbbbb @ None

Problem 5: Finite State Machines [Total 20 pts]

(a) Using the subset algorithm, convert the following NFA to a DFA, and fill in the blanks appropriately matching the DFA
provided with the right nodes and transitions. Only the blanks will be graded. [12 pts]
NFA: Scratch Space (if needed)
OO
al \a c

e

E2
E1 7 E7
E3 E5
Y¥ k
;

S S2: S3: Sy:
S5: E1: E2: E3:
E4: Es: E6: E7:
(b) Which of the following are the final states? Select all that apply [3 pts]

Ms1 @52 ()3 (st (5)s5 (N)None

(c) Write a regex to describe the language of the above NFA [5 pts]

Problem 6: Lambda Calculus [Total 15 pts]

For the following questions perform a single B-reduction using eager (call by value) evaluation on the outermost expression.
If you cannot reduce it, write Beta Normal Form. You may not a-convert your final answer.

@) (Ay.yy)(Ax.y)(Ay.xy)) [2 pts]

(b) (Ax.Ax.xx)(z (Aa.a)) [3 pts]

For the following questions perform a single S-reduction using lazy (call by name) evaluation on the outermost expression.
If you cannot reduce it, write Beta Normal Form. You may not a-convert your final answer.

(© (Ay.yy)((Ax.y)(Ay.xy)) [2 pts]
(d) (Ax.Ax.xx)(z (Aa.a)) [3 pts]
(e) Which of the following is alpha equivalent to (Ax.xAx.x y)? Select all that apply. [2 pts]

@()tz.z}lx.zy) ()(y.y/\x.xy) @(/\z.zAx.xy) @(/\x.x)ly.yz) @None

(f) Convert the following to Beta Normal Form: (Az.Ax.xz)(Ay.yy)c [3 pts]

@c (}lx.xx)c @c()ty.yy) @/\x.x(cc) @cc @InﬁniteRecursion @None

Problem 7: Python Programming [Total 10 pts]

(a) Write a function mur that has the same functionality of map, but uses reduce. [4 pts]

def mur(f,lst):
return reduce(___BLANK____)

#mur(lambda x: x + 1,[1,2,3]) => [2,3,4]
#mur(lambda x: len(x),[[1,2,3]1,[4,5]1,[61]) => [3,2,1]
#mur(lambda x: x,[1,2,3]) => [1,2,3]

Blank:

(b) Write a function sumnum that takes in a formatted string and returns the sum of all the numbers found in that string. [6 pts]

#sumnum(" | have 2 apples and 30 oranges") => 32
#sumnum("There are no numbers here") => o
#sumnum(" | can have negatives like -2 and -4") => -6

def sumnum(s):

Cheat Sheet

Python

Lists

st = []

st = [1,2,3,4]

Ist[2] # returns 3

Ist[-1] # returns 4

Ist[o] = 4 # list becomes [4,2,3,4]
lst[1:3] # returns [2,3]

Strings

string = "hello"
len(string) # returns 5
string[o] # returns h
string[2:4] # returns Il

string = "this is a sentence"
string.split(" ")
returns ["this", "is", "a", "sentence"]

Map and Reduce

map(function, lIst)

returns a map object corresponding to the

result of calling function to each item in lIst
#

List functions

st = [1,2,3,4,5]

len(lst) # returns 5

sum(lst) # returns 15

[st.append(6) # returns None. lst is now [1,2,3,4,5,6]
[st.pop() # returns 6. Ist is now [1,2,3,4,5]

regex in python
re.fullmatch(pattern,string)

returns a match object if string is a
full/exact match to string.

returns None otherwise

re.search(pattern,string)
returns a match object corresponding to
the first instance of pattern in string.
returns None otherwise

re.findall(pattern, string)
returns all non-overlapping matches
of pattern in string as a list

typically needs to be cast as a list # match objects
m = re.search("([o-9]+) ([0o-9]+)", "12 34")
reduce(function, lst,start) m.groups() # returns ("12", "34")
returns a value that is the combination of # returns a tuple of all things that were
all items in lst. function will be used to # captured with parenthesis
combine the items together, starting with
start, and then going through each item m.group(n) # m.group(1) = "12", m.group(2) = "34"
in the list # returns the string captured by the nth
set of parenthesis
Regex

* zero or more repetitions of the preceding character or group

one or more repetitions of the preceding character or group
? zero or one repetitions of the preceding character or group
. any character
ry|ry ry or ry (eg. alb means 'a’ or’b’)
[rirors] | r1orrporr3(eg [abclis’a or'b’ or'c’)
[Cr] anything except rq (eg. ["abc] is anything but an 'a’, 'b’, or ’c’)
[r1-r)] range specification (eg. [a-z] means any letter in the ASCII range of a-z)
{n} exactly n repetitions of the preceding character or group
{n,} at least n repetitions of the preceding character or group
{m,n} at least m and at most n repetitions of the preceding character or group
h start of string
S end of string
(r1) capture the pattern r; and store it somewhere (match group in Python)
\d any digit, same as [0-9]
\s any space character like \n, \t, \r, \f, or space

NFA to DFA Algorithm (Subset Construction Algorithm)

NFA (input): (X, Q, go, Fr, 0), DFA (output): (X, R, ro, Fy,)

R < {}
ro < € — closure(o, qo)
while 3 an unmarked state r € R do
mark r
forall 2 € 2 do
E «— move(o,r, a)
e «— ¢ — closure(o, E)
if e ¢ R then
R «— R U {e}
end if
op«—o,U{r,a, e}
end for
end while
Fg—{r|3serwithseF,}

Grammars

Regex Lambda Calc

R — © e — X
| o | Ax.e
| € | ee
| RR
| R|R
| R

Lambda Calc Encodings

We will give you the encodings that you will need. They may or may not look like/include the following:

AxAy.x = true
AxAy.y = false
ejepes = ifejthen e else e

