CMSC330 Spring 2025 Quiz 2 Solutions

Problem 1: Basics [Total 4 pts]

-
=
[
o
&
7]
o

Jaregular expression that describes strings of any length that contain any number of balanced parentheses
Property Based Testing is intended to completely replace unit testing
The expression (fun x y -> 3) (print_string "a") (print_string "b") always prints out "ab"

Regular expressions can only describe a finite set of strings

L _BONONCONC)
O BN N N

No regular expression can describe strings of any length that contain any number of balanced parentheses

Problem 2: Property Based Testing [Total 6 pts]
Consider the following incorrect tree_map function.

type tree = Leaf of int | Node of int * tree * tree

(* has bug(s)! *)

let rec tree_map f tree = match tree with
Leaf(x) -> Leaf(x)
|[Node(x,1,r) -> Node(f x, tree_map f 1, r)

Consider the following property p about the tree_map function:

p : If calling tree_map on some tree t1 results in tree t2, then t1's root value should be different than ¢2's root value

Using a correct implementation of tree_map, this property p should hold true for all valid inputs?

Using our implementation of tree_map, this property p would not hold true for all valid inputs?

®

Suppose | encode this property in OCaml to be used in OCaml's QCheck library as the following:

let prop f tree = match (tree,tree_map f tree) with
Leaf(x),Leaf(x) -> true
|Node(x,_,_),Node(y,_,_) -> if x <> y then true else false
|-,_ -> false

The above prop function is a valid encoding of the property p.

type tree = Leaf of int | Node of int * tree * tree

(* has bug(s)! *)
let rec tree_map f tree = match tree with
Leaf(x) -> Leaf(f x)
|[Node(x,1,r) -> Node(x, tree_map f 1, tree_map f r)

Consider the following property p about the tree_map function:
p : tree_map should not change the number of leaves

Using a correct implementation of tree_map, this property p should hold true for all valid inputs?

®

Using our implementation of tree_map, this property p would not hold true for all valid inputs?

Suppose | encode this property in OCaml to be used in OCaml’s QCheck library as the following:

let prop f tree = count_leaves tree = count_leaves tree_map tree

The above prop function is a valid encoding of the property p. .

type tree = Leaf of int | Node of int * tree x tree

(* has bug(s)! =x)

let rec tree_map f tree = match tree with
Leaf(x) -> Leaf(x)
[Node(x,1,r) -> Node(f x, 1, r)

Consider the following property p about the tree_map function:
p : calling tree_map using the identity function should not change the tree

Using a correct implementation of tree_map, this property p should hold true for all valid inputs?

®

Using our implementation of tree_map, this property p would not hold true for all valid inputs?

Suppose | encode this property in OCaml to be used in OCaml's QCheck library as the following:

let prop f tree = tree_map (fun x -> x) tree = tree

The above prop function is a valid encoding of the property p. .

type tree = Leaf of int | Node of int * tree * tree

(* has bug(s)! *)
let rec tree_map f tree = match tree with
Leaf(x) -> Leaf(x)
|Node(x,1,r) -> Node(f x, tree_map f r, tree_map f 1)

Consider the following property p about the tree_map function:
p : tree_map should not change the shape of the tree

Using a correct implementation of tree_map, this property p should hold true for all valid inputs?

®

Using our implementation of tree_map, this property p would not hold true for all valid inputs?
Suppose | encode this property in OCaml to be used in OCaml’s QCheck library as the following:
let prop f tree = same_shape (tree_map tree) tree

Assuming there exists a function called same_shape which returns true if the two trees as input are the same shape and
false otherwise, the above prop function is a valid encoding of the property p. .

Problem 3: Regex [Total 10 pts]

* zero or more repetitions of the preceding character or group
one or more repetitions of the preceding character or group

? zero or one repetitions of the preceding character or group

. any character

ry|ry ry or ry (eg. alb means'a’ or’b’)

[abc] | match any character in abc

[Cr] anything except rq (eg. ["abc] is anything but an 'a’,'b’, or ’c’)

[ri-r;] | range specification (eg. [a-z] means any letter in the ASCII range of a-z)
{n} exactly n repetitions of the preceding character or group

{n,} at least n repetitions of the preceding character or group

{m,n} at least m and at most n repetitions of the preceding character or group
B start of string

S end of string

(a) Names and Ages [4 pts]
Write a regex that describes a person’s name and their age in the format:
Name: age
+ A Name starts with a Capital Letter followed by any number (o or more) of lowercase letters

+ An age is a valid integer from 1 - 100 (can be o padded)

Valid Examples of Names and Ages names Invalid examples of Names and Ages names
Baka: 42 nocaptial: -34

Mamat: 24 Hasnumber6: 200

W: 002 Nointeger: 3.14

“[A-Z][a-z]*: 0*([1-9][0-9]?[100)

Write a regex that describes a person’s name and their age in the format:
Name: age
+ A Name starts with 4 Capital Letters followed by any number (0 or more) of lowercase letters

+ An age is a valid integer from 1000 - 1100 (can be o padded)

Valid Examples of Names and Ages names Invalid examples of Names and Ages names
BAKA: 1042 nocaptial: -34

MAMAt: 1024 Hasnumber6: 1200

SUSSman: 001002 Nointeger: 1003.14

“[A-Z){s}a-z]*: o*(10[0-9]{2} | 1100)

Write a regex that describes a person’s name and their age in the format:
Name: age
« A Name starts with two Capital Letters followed by any number of lowercase letters

+ An age is a valid integer from 50 - 92(inclusive) (can be o padded)

Valid Examples of Names and Ages names Invalid examples of Names and Ages names
BAka: 84 nocaptial: -34

MAmat: 92 Hasnumber6: 200

WAluiji: 0050 NOinteger: 63.14

"[A-Z){2}[a-z]*: o*([5-8][0-9] | 9[o-2])

Write a regex that describes a person’s name and their age in the format:

Name: age
« A Name starts with a lowercase letter followed by any number of uppercase letters

+ An age is a valid integer from 200 - 300 (inclusive) (can be o padded)

Valid Examples of Names and Ages names Invalid examples of Names and Ages names
bAKA: 222 NOLOWER: -34

mAMAT: 234 hASNUMBER5: 200

wARIO: 00200 noFLOATS: 3.14

“[a-zI[A-Z]*: 0*(2[0-9]{2} | 300)

(b) Addresses [6 pts]
Write a regex that describes exactly a youtube video URL.

« Will always start with: youtube.com/watch?

« Will be followed with 1 or more key-value pairs in the form: key=value

+ Keys will be single lowercase letter

+ Values will be any alphanumeric (lowercase, uppercase, digits), each at least 1 character long

+ key-value pairs will be separated by an ampersand (&) character if there is more than 1 pair
valid urls invalid urls

youtube. com/watch?v=dQw4w9WgXcQ youtube.com/watch?autoplay=1&video=djymZspawFc
youtube.com/watch?v=XqZsoesa55w&t=10 youtube.com/watch?
youtube.com/watch?a=0&v=k85mRPqvMbE youtube.com/watch?t=20v=2q1QJ2QztgM

youtube\ .com/watch\? ([a-z]=([A-Z]I[a-z]|[0-9])+&)*[a-z]=([A-Z]|[a-z]|[0-9])+

