
CMSC330 Spring 2025 Quiz 2 Solutions

Problem 1: Basics [Total 4 pts]

True False
\ a regular expression that describes strings of any length that contain any number of balanced parentheses T F

Property Based Testing is intended to completely replace unit testing T F

The expression (fun x y -> 3) (print_string "a") (print_string "b") always prints out "ab" T F

Regular expressions can only describe a finite set of strings T F

No regular expression can describe strings of any length that contain any number of balanced parentheses T F

Problem 2: Property Based Testing [Total 6 pts]

Consider the following incorrect tree_map function.

type tree = Leaf of int | Node of int * tree * tree

(* has bug(s)! *)
let rec tree_map f tree = match tree with

Leaf(x) -> Leaf(x)
|Node(x,l,r) -> Node(f x, tree_map f l, r)

Consider the following property p about the tree_map function:

p : If calling tree_map on some tree t1 results in tree t2, then t1’s root value should be different than t2’s root value

Using a correct implementation of tree_map, this property p should hold true for all valid inputs?

Yes No

Using our implementation of tree_map, this property p would not hold true for all valid inputs?

Yes No

Suppose I encode this property in OCaml to be used in OCaml’s QCheck library as the following:

let prop f tree = match (tree,tree_map f tree) with
Leaf(x),Leaf(x) -> true
|Node(x,_,_),Node(y,_,_) -> if x <> y then true else false
|_,_ -> false

The above prop function is a valid encoding of the property p .

Yes No

1

type tree = Leaf of int | Node of int * tree * tree

(* has bug(s)! *)
let rec tree_map f tree = match tree with

Leaf(x) -> Leaf(f x)
|Node(x,l,r) -> Node(x, tree_map f l, tree_map f r)

Consider the following property p about the tree_map function:

p : tree_map should not change the number of leaves

Using a correct implementation of tree_map, this property p should hold true for all valid inputs?

Yes No

Using our implementation of tree_map, this property p would not hold true for all valid inputs?

Yes No

Suppose I encode this property in OCaml to be used in OCaml’s QCheck library as the following:

let prop f tree = count_leaves tree = count_leaves tree_map tree

The above prop function is a valid encoding of the property p . Yes No

type tree = Leaf of int | Node of int * tree * tree

(* has bug(s)! *)
let rec tree_map f tree = match tree with

Leaf(x) -> Leaf(x)
|Node(x,l,r) -> Node(f x, l, r)

Consider the following property p about the tree_map function:

p : calling tree_map using the identity function should not change the tree

Using a correct implementation of tree_map, this property p should hold true for all valid inputs?

Yes No

Using our implementation of tree_map, this property p would not hold true for all valid inputs?

Yes No

Suppose I encode this property in OCaml to be used in OCaml’s QCheck library as the following:

let prop f tree = tree_map (fun x -> x) tree = tree

The above prop function is a valid encoding of the property p . Yes No

2

type tree = Leaf of int | Node of int * tree * tree

(* has bug(s)! *)
let rec tree_map f tree = match tree with

Leaf(x) -> Leaf(x)
|Node(x,l,r) -> Node(f x, tree_map f r, tree_map f l)

Consider the following property p about the tree_map function:

p : tree_map should not change the shape of the tree

Using a correct implementation of tree_map, this property p should hold true for all valid inputs?

Yes No

Using our implementation of tree_map, this property p would not hold true for all valid inputs?

Yes No

Suppose I encode this property in OCaml to be used in OCaml’s QCheck library as the following:

let prop f tree = same_shape (tree_map tree) tree

Assuming there exists a function called same_shape which returns true if the two trees as input are the same shape and

false otherwise, the above prop function is a valid encoding of the property p . Yes No

3

Problem 3: Regex [Total 10 pts]

* zero or more repetitions of the preceding character or group
+ one or more repetitions of the preceding character or group
? zero or one repetitions of the preceding character or group
. any character
r1 |r2 r1 or r2 (eg. a|b means ’a’ or ’b’)
[abc] match any character in abc

[ˆr1] anything except r1 (eg. [ˆabc] is anything but an ’a’, ’b’, or ’c’)
[r1-r2] range specification (eg. [a-z] means any letter in the ASCII range of a-z)
{n} exactly n repetitions of the preceding character or group
{n,} at least n repetitions of the preceding character or group
{m,n} at least m and at most n repetitions of the preceding character or group
ˆ start of string
$ end of string

(a) Names and Ages [4 pts]

Write a regex that describes a person’s name and their age in the format:

Name: age

• A Name starts with a Capital Letter followed by any number (0 or more) of lowercase letters

• An age is a valid integer from 1 - 100 (can be 0 padded)

Valid Examples of Names and Ages names

Baka: 42
Mamat: 24
W: 002

Invalid examples of Names and Ages names

nocaptial: -34
Hasnumber6: 200
Nointeger: 3.14

ˆ[A-Z][a-z]*: 0*([1-9][0-9]?|100)

Write a regex that describes a person’s name and their age in the format:

Name: age

• A Name starts with 4 Capital Letters followed by any number (0 or more) of lowercase letters

• An age is a valid integer from 1000 - 1100 (can be 0 padded)

Valid Examples of Names and Ages names

BAKA: 1042
MAMAt: 1024
SUSSman: 001002

Invalid examples of Names and Ages names

nocaptial: -34
Hasnumber6: 1200
Nointeger: 1003.14

ˆ[A-Z]{4}[a-z]*: 0*(10[0-9]{2} | 1100)

4

Write a regex that describes a person’s name and their age in the format:

Name: age

• A Name starts with two Capital Letters followed by any number of lowercase letters

• An age is a valid integer from 50 - 92(inclusive) (can be 0 padded)

Valid Examples of Names and Ages names

BAka: 84
MAmat: 92
WAluiji: 0050

Invalid examples of Names and Ages names

nocaptial: -34
Hasnumber6: 200
NOinteger: 63.14

ˆ[A-Z]{2}[a-z]*: 0*([5-8][0-9] | 9[0-2])

Write a regex that describes a person’s name and their age in the format:

Name: age

• A Name starts with a lowercase letter followed by any number of uppercase letters

• An age is a valid integer from 200 - 300 (inclusive) (can be 0 padded)

Valid Examples of Names and Ages names

bAKA: 222
mAMAT: 234
wARIO: 00200

Invalid examples of Names and Ages names

NOLOWER: -34
hASNUMBER5: 200
noFLOATS: 3.14

ˆ[a-z][A-Z]*: 0*(2[0-9]{2} | 300)

(b) Addresses [6 pts]

Write a regex that describes exactly a youtube video URL.

• Will always start with: youtube.com/watch?

• Will be followed with 1 or more key-value pairs in the form: key=value

• Keys will be single lowercase letter

• Values will be any alphanumeric (lowercase, uppercase, digits), each at least 1 character long

• key-value pairs will be separated by an ampersand (&) character if there is more than 1 pair
valid urls

youtube.com/watch?v=dQw4w9WgXcQ
youtube.com/watch?v=XqZsoesa55w&t=10
youtube.com/watch?a=0&v=k85mRPqvMbE

invalid urls

youtube.com/watch?autoplay=1&video=djymZspawFc
youtube.com/watch?
youtube.com/watch?t=20v=Zq1QJ2QztgM

youtube\.com/watch\? ([a-z]=([A-Z]|[a-z]|[0-9])+&)*[a-z]=([A-Z]|[a-z]|[0-9])+

5

