
CMSC330 Spring 2025 Quiz 1 Solutions

Problem 1: Basics [Total 4 pts]

True False
In OCaml, the terms values and expressions can be used interchangeably T F

Using mutable variables can cause side effects T F

Due to OCaml’s type constraints, you cannot make a list of functions T F

fold_left’s accumulator cannot be a tuple T F

fold_left’s accumulator can be a list T F

fold_left’s accumulator can be a tuple T F

In OCaml, the terms values and expressions cannot be used interchangeably T F

fold_left’s accumulator cannot be a list T F

Problem 2: OCaml Typing and Evaluating [Total 6 pts]

Give the type for the following functions foo and give what the following function call evaluates to. If there is a type error
in the function, put "TYPE ERROR" for the type, and put "ERROR" for the evaluation. If the function call causes an error for
any reason, put "ERROR" for the evaluation.

(a) [3 pts]

let foo x y =
match x,y with
x::xs,y::ys -> y :: xs

| _ -> [] ;;

foo [] [1;2;3] ;;

Typeof foo:
’a list -> ’a list -> ’a list

Evaluation:
[]

(b) [3 pts]

let foo lst = let total, _ =
fold_left
(fun (tot, idx) ele ->

(tot + ele * idx, idx + 1))
(0, 0)
lst in total;;

foo [3;6;9] ;;

Typeof foo:
int list -> int

Evaluation:
24

1

(c) [3 pts]

let foo x y =
match x,y with
x::xs,y::ys -> y :: xs

| _ -> (0,0) ;;

foo [] [1;2;3] ;;

Typeof foo:
Type Error

Evaluation:
Error

(d) [3 pts]

let foo lst = let total, _ =
fold_left
(fun (tot, idx) ele ->

(tot*ele*idx, idx + 1))
(0, 0)
lst in total;;

foo [7;4;23] ;;

Typeof foo:
int list -> int

Evaluation:
0

(e) [3 pts]

let foo x y = match x,y with
x::xs,y::ys -> y :: xs

| _ -> [9] ;;

foo [] [1;2;3] ;;

Typeof f00:
int list -> int list -> int list

Evaluation:
[9]

(f) [3 pts]

let foo lst = let total, _ =
fold_left
(fun (tot, idx) ele ->

(tot + ele * idx, idx + 1))
(0, 0)
lst in total;;

foo [2;4;8] ;;

Typeof foo:
int list -> int

Evaluation:
20

(g) [3 pts]

let foo x y = match x,y with
x::xs,y::ys -> y :: xs

| _ -> [] ;;

foo (1,3) [1;2;3] ;;

Typeof foo:
’a list -> ’a list -> ’a list

Evaluation:
Error

(h) [3 pts]

let foo lst = let total, _ =
fold_left
(fun (tot, idx) ele ->

(tot * ele * idx, idx + 1))
(1, 0)
lst in total;;

foo [1;3;5] ;;

Typeof foo:
int list -> int

Evaluation:
0

2

Problem 3: Filter [Total 4 pts]

filter is another common higher order function that has type (’a -> bool) -> ’a list -> ’a list. It applies
a function to every item in a list and returns a list of the items that caused the function to return true. using only fold
(left or right, given below), write a function called my_filter which has the same functionality as filter. f will be the
function that returns true or false, and l will be the list. Note: the original order must be maintained.

(* example: my_filter (fun x -> x > 3) [2;4;6] = [4;6] *)

let my_filter f l = fold_right (fun x acc -> if f x then x :: acc else acc) l []
----------- alternatively -----------
let my_filter f l = fold_left (fun acc x -> if f x then acc @ [x] else acc) [] l

Problem 4: Coding [Total 6 pts]

Write a function call last_sum which takes in a int list list and returns the sum of the last elements in each int
list. If list is empty, it adds nothing to the total.

You can write helper functions, you may use the rec keyword, you do not have to use map/fold (however they are still
given). You may not use any List module functions, except those provided. (cons and @ are fine). You may also not use any
imperative OCaml.

(* last_sum has type int list list -> int *)
(* Examples

last_sum [] = 0
(* 3 + 6 + 9 *)
last_sum [[1;2;3];[4;5;6];[7;8;9]] = 18
(* 0 + 1 + 3 *)
last_sum [[];[1];[2;3]] = 4

*)

(* Write your code below *)

let rec map f l = match l with
[] -> []

|x::xs -> (f x)::(map f xs)

let rec fold_left f a l = match l with
[] -> a

|x::xs -> fold_left f (f a x) xs

let rec fold_right f l a = match l with
[] -> a

|x::xs -> f x (fold_right f xs a)

let rec last_sum mtx =
let lasts = map (fun x -> fold_left (fun acc el -> el) 0 x) mtx in fold_left (+) 0 lasts

----------- alternatively -----------
let last_usm mtx = fold_left (fun a x -> a + (fold_left (fun a x -> x) 0 x)) 0 mtx
----------- alternatively -----------
let rec get_last lst = match lst with
| [] -> 0
| [x] -> x
| x :: xs -> get_last xs

let rec last_sum mtx = let lasts = map (fun x -> get_last x) mtx in fold_left (+) 0 lasts
----------- alternatively -----------
let rec last_sum mtx =

let rec get_last lst = match lst with
[] - > 0

| [x] -> x
| _::xs -> get_last xs in

match mtx with
[] -> 0
|x::xs -> get_last x + last_usm xs

3

Write a function call last_prod which takes in a int list list and returns the product of the last elements in each
int list. If list is empty, it multiplies the value by 1.

You can write helper functions, you may use the rec keyword, you do not have to use map/fold (however they are still
given). You may not use any List module functions, except those provided. (cons and @ are fine). You may also not use any
imperative OCaml.

(* last_prod has type int list list -> int *)
(* Examples

last_prod [] = 1
(* 3 * 6 * 9 *)
last_prod [[1;2;3];[4;5;6];[7;8;9]] = 162
(* 1 * 1 * 3 *)
last_prod [[];[1];[2;3]] = 3

*)

(* Write your code below *)

let rec map f l = match l with
[] -> []

|x::xs -> (f x)::(map f xs)

let rec fold_left f a l = match l with
[] -> a

|x::xs -> fold_left f (f a x) xs

let rec fold_right f l a = match l with
[] -> a

|x::xs -> f x (fold_right f xs a)

let rec last_prod mtx =
let lasts = map (fun x -> fold_left (fun acc el -> el) 1 x) mtx in fold_left (*) 1 lasts

----------- alternatively -----------

let last_prod mtx = fold_left (fun a x -> a * (fold_left (fun a x -> x) 1 x)) 1 mtx

----------- alternatively -----------

let rec get_last lst = match lst with
| [] -> 1
| [x] -> x
| x :: xs -> get_last xs

let rec last_prod mtx = let lasts = map (fun x -> get_last x) mtx in fold_left (*) 1 lasts

----------- alternatively -----------

let rec last_prod mtx =
let rec get_last lst = match lst with

[] - > 1
| [x] -> x
| _::xs -> get_last xs in

match mtx with
[] -> 1
|x::xs -> get_last x * last_prod xs

4

Write a function call last_concat which takes in a string list list and returns the result of concating the last
elements in each string list. If list is empty, it should not modify the resulting string.

You can write helper functions, you may use the rec keyword, you do not have to use map/fold (however they are still
given). You may not use any List module functions, except those provided. (cons and @ are fine). You may also not use any
imperative OCaml.

(* last_concat has type string list list -> string *)
(* Examples

last_concat [] = ""
(*"b" ^ "d" ^ "f" *)
last_concat [["a";"b"];["c";"d"];["e";"f"]] = "bdf"
(* "" ^ "a" ^ "c" *)
last_concat [[];["a"];["b";"c"]] = "ac"

*)

(* Write your code below *)

let rec map f l = match l with
[] -> []

|x::xs -> (f x)::(map f xs)

let rec fold_left f a l = match l with
[] -> a

|x::xs -> fold_left f (f a x) xs

let rec fold_right f l a = match l with
[] -> a

|x::xs -> f x (fold_right f xs a)

let rec last_concat mtx =
let lasts = map (fun x -> fold_left (fun acc el -> el) 1 x) mtx in fold_right (^) lasts ""

----------- alternatively -----------

let last_concat mtx = fold_left (fun a x -> (fold_left (fun a x -> x) "" x) ^ a) "" mtx

----------- alternatively -----------

let rec get_last lst = match lst with
| [] -> ""
| [x] -> x
| x :: xs -> get_last xs

let last_concat mtx = let lasts = map (fun x -> get_last x) mtx in fold_right (^) lasts ""

----------- alternatively -----------

let rec last_concat mtx =
let rec get_last lst = match lst with

[] - > 1
| [x] -> x
| _::xs -> get_last xs in

match mtx with
[] -> 1
|x::xs -> get_last x ^ last_concat xs

5

