1

CMSC330 Spring 2025 Quiz 1 Solutions

Problem 1: Basics

In OCaml, the terms values and expressions can be used interchangeably

Using mutable variables can cause side effects

Due to OCaml’s type constraints, you cannot make a list of functions

fold_left’s accumulator cannot be a tuple
fold_left’s accumulator can be a list

fold_left’s accumulator can be a tuple

In OCaml, the terms values and expressions cannot be used interchangeably

fold_left’'s accumulator cannot be a list

Problem 2: OCaml Typing and Evaluating

-
=
S
[

ON N N NONON JNC)

Y
7]
[

| BONONON N BON

ocaml

[Total 4 pts]

[Total 6 pts]

Give the type for the following functions foo and give what the following function call evaluates to. If there is a type error
in the function, put "TYPE ERROR" for the type, and put "ERROR" for the evaluation. If the function call causes an error for

any reason, put "ERROR" for the evaluation.

(@)
let foo x y =
match x,y with
X:IXS,y:lys ->y i XS

| - -> 1 ;;

foo [1 [1;2;3] ;;

(b)

let foo lst = let total, _ =
fold_left
(fun (tot, idx) ele ->
(tot + ele * idx, idx + 1))
(0, 0)
1st in total;;

foo [3;6;9] ;;

Type of foo:

Evaluation:

Type of foo:

Evaluation:

[3 pts]

"a list ->"a list -> "a list

(1

[3 pts]

int list -> int

24

(c)

let foo x y =
match x,y with
X:iXS,y:iyS -> Yy :: XS
| - -> (0,0) ;;

foo [] [1;2;3] ;;

(d)
let foo lst = let total, _ =
fold_left
(fun (tot, idx) ele ->
(totxelexidx, idx + 1))
(0, 0)
1st in total;;
foo [7;4;23] ;;
(e)

let foo x y = match x,y with
X1iXS,y:iysS ->y i: XS
| - -> 9] ;;

foo [1 [1;2;3]1 ;;

(f)
let foo lst = let total, _ =
fold_left
(fun (tot, idx) ele ->
(tot + ele x idx, idx + 1))
(0, 0)
1st in total;;
foo [2;4;8] ;;

(g)

let foo x y = match x,y with
XIIXS,y:1ys ->y i XS

| - -> 11 ;;

foo (1,3) [1;2;3] ;;

(h)
let foo lst = let total, _ =
fold_left
(fun (tot, idx) ele ->
(tot * ele x idx, idx + 1))
(1, 0)
lst in total;;
foo [1;3;5] ;;

Type of foo:

Evaluation:

Type of foo:

Evaluation:

Type of foo:

Evaluation:

Type of foo:

Evaluation:

Type of foo:

Evaluation:

Type of foo:

Evaluation:

[3 pts]

Type Error
Error
[3 pts]
int list -> int
o]
(3 pts]
int list -> int list -> int list
[9]
(3 pts]
int list -> int
20
[3 pts]
'a list ->"a list -> "a list
Error
[3 pts]
int list -> int
o}

Problem 3: Filter [Total 4 pts]

filterisanother common higher order functionthat hastype ('a -> bool) -> 'a list -> ’a list. Itapplies
a function to every item in a list and returns a list of the items that caused the function to return true. using only fold
(Left or right, given below), write a function called my_filter which has the same functionality as filter. f will be the
function that returns true or false, and 1 will be the list. Note: the original order must be maintained.

(* example: my_filter (fun x -> x > 3) [2;4;6] = [4;6] *)

let my_filter f 1 = fold_right (fun x acc -> if f x then x :: acc else acc) 1 []
----------- alternatively -----------
let my_filter f 1 = fold_left (fun acc x -> if f x then acc @ [x] else acc) []1 1

Problem 4: Coding [Total 6 pts]

Write a function call last_sum which takes ina int list list and returns the sum of the last elements in each int
list. If list is empty, it adds nothing to the total.

You can write helper functions, you may use the rec keyword, you do not have to use map/fold (however they are still
given). You may not use any List module functions, except those provided. (cons and @ are fine). You may also not use any

imperative OCaml.
let rec map f 1L = match 1 with

(* last_sum has type int list list -> int x) [1 -> [1

(* Examples |x::xs -> (f x)::(map f xs)
last_sum [] =0
(3 +6+9 %) let rec fold_left f a 1 = match 1 with
last_sum [[1;2;3];[4;5;6];[7;8;9]1] = 18 [1 -> a
(* 0+ 1+ 3 %) |x::xs -> fold_left f (f a x) xs
last_sum [[];[1]1;[2;3]] = 4

*) let rec fold_right f 1 a = match 1 with
_ [l ->a

(* Write your code below *) |x::xs -> f x (fold_right f xs a)

let rec last_sum mtx =
let lasts = map (fun x -> fold_left (fun acc el -> el) 0 x) mtx in fold_left (+) 0 lasts

----------- alternatively -----------

let last_usm mtx = fold_left (fun a x -> a + (fold_left (fun a x -> x) 0 x)) 0 mtx
----------- alternatively -----------

let rec get_last lst = match lst with

| [1 ->0

| [x] -> x

| x :: xs -> get_last xs

let rec last_sum mtx = let lasts = map (fun x -> get_last x) mtx in fold_left (+) 0 lasts
----------- alternatively -----------
let rec last_sum mtx =
let rec get_last lst = match lst with
[1 ->0
| [x] -> x
| —::xs -> get_last xs in
match mtx with
[1 ->0
|x::xs -> get_last x + last_usm xs

Write a function call last_prod whichtakesina int 1ist list and returnsthe product of the last elements in each
int list. If list is empty, it multiplies the value by 1.

You can write helper functions, you may use the rec keyword, you do not have to use map/fold (however they are still
given). You may not use any List module functions, except those provided. (cons and @ are fine). You may also not use any
imperative OCaml.

let rec map f 1 = match 1 with
(*» last_prod has type int list list -> int x*) [1 -> []

(* Examples
last_prod [] =1
(x 3 % 6 *x 9 %) let rec fold_left f a 1
last_prod [[1;2;3];[4;5;6]1;[7;8;9]1]1 = 162 [
(x 1 % 1 %x 3 %)
last_prod [[];[11;[2;3]]1 =3

*) let rec fold_right f 1 a = match 1 with
[l ->a
[x::xs -> f x (fold_right f xs a)

—

[x::xs -> (f x)::(map XS)

match 1 with
-> a
[x::xs -> fold_left f (f a x) xs

(* Write your code below *)

let rec last_prod mtx =
let lasts = map (fun x -> fold_left (fun acc el -> el) 1 x) mtx in fold_left (*) 1 lasts

let last_prod mtx = fold_left (fun a x -> a x (fold_left (fun a x -> x) 1 x)) 1 mtx

let rec get_last lst = match lst with

| [1 ->1
| [x] -> x
| x :: xs -> get_last xs

let rec last_prod mtx = let lasts = map (fun x -> get_last x) mtx in fold_left (*) 1 lasts

let rec last_prod mtx =
let rec get_last lst = match lst with
[1->1
| [x] -> X
| —::xs -> get_last xs in
match mtx with
(1 ->1
|x::xs -> get_last x x last_prod xs

Write a function call last_concat which takesina string list list and returns the result of concating the last
elements in each string list. If list is empty, it should not modify the resulting string.

You can write helper functions, you may use the rec keyword, you do not have to use map/fold (however they are still
given). You may not use any List module functions, except those provided. (cons and @ are fine). You may also not use any

imperative OCaml.

let rec map f 1L = match 1 with
(» last_concat has type string list list -> string x*) (1 -> []

(* Examples
last_concat [] = ""

—h

[x::xs -> (f x)::(map XS)

(x"b" 7 "d" ~ " x) let rec fold_left f a 1 = match 1 with
last_concat [["a";"b"];["c";"d"];["e";"f"]] = "bdf" 1 ->a
e [x::xs -> fold_left f (f a x) xs
1ast7C0nCat [[];[“a”];[”b“;”c“]] = uacu

*) let rec fold_right f 1 a = match 1 with

[1 ->a

(* Write your code below *) [x::xs -> f x (fold_right f xs a)

let rec last_concat mtx =
let lasts = map (fun x -> fold_left (fun acc el -> el) 1 x) mtx in fold_right (~) lasts ""

let last_concat mtx = fold_left (fun a x -> (fold_left (fun a x -> x) "" x) ~ a) "" mtx

let rec get_last lst = match lst with
| [] _> nn

| [x] -> x

| x :: xs -> get_last xs

let last_concat mtx = let lasts = map (fun x -> get_last x) mtx in fold_right (©) lasts ""

let rec last_concat mtx =
let rec get_last lst = match lst with
[1->1
| [x] -> X
| —::xs -> get_last xs in
match mtx with
[1 >1
|x::xs -> get_last x ~ last_concat xs

